Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota

Abstract

As a conserved pathway that lies at the intersection between host defence and cellular homeostasis, autophagy serves as a rheostat for immune reactions. In particular, autophagy suppresses excess type I interferon (IFN-I) production in response to viral nucleic acids. It is unknown how this function of autophagy relates to the intestinal barrier where host–microbe interactions are pervasive and perpetual. Here, we demonstrate that mice deficient in autophagy proteins are protected from the intestinal bacterial pathogen Citrobacter rodentium in a manner dependent on IFN-I signalling and nucleic acid sensing pathways. Enhanced IFN-stimulated gene expression in intestinal tissue of autophagy-deficient mice in the absence of infection was mediated by the gut microbiota. Additionally, monocytes infiltrating into the autophagy-deficient intestinal microenvironment displayed an enhanced inflammatory profile and were necessary for protection against C. rodentium. Finally, we demonstrate that the microbiota-dependent IFN-I production that occurs in the autophagy-deficient host also protects against chemical injury of the intestine. Thus, autophagy proteins prevent a spontaneous IFN-I response to microbiota that is beneficial in the presence of infectious and non-infectious intestinal hazards. These results identify a role for autophagy proteins in controlling the magnitude of IFN-I signalling at the intestinal barrier.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protection conferred by ATG16L1 inhibition is dependent on the IFN-I pathway.
Fig. 2: Different models of autophagy deficiency confer resistance to C. rodentium infection.
Fig. 3: Protection conferred by ATG16L1 inhibition is dependent on MAVS and STING.
Fig. 4: Type I IFN signature in colonic tissue of autophagy-deficient mice is dependent on the microbiota.
Fig. 5: Autophagy deficiency protects against chemical injury of the intestine.
Fig. 6: Protection conferred by Atg16L1 mutation is associated with enhanced monocyte function.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon request. FASTQ files corresponding to the RNA–seq data have been deposited in a public database (RNA–seq GEO accession no. GSE115025, 16S GEO accession no. GSE116491).

References

  1. Ramanan, D. & Cadwell, K. Intrinsic defense mechanisms of the intestinal epithelium. Cell Host Microbe 19, 434–441 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Cadwell, K. Crosstalk between autophagy and inflammatory signalling pathways: balancing defence and homeostasis. Nat. Rev. Immunol. 16, 661–675 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tal, M. C. et al. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc. Natl Acad. Sci. USA 106, 2770–2775 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Jounai, N. et al. The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc. Natl Acad. Sci. USA 104, 14050–14055 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Liang, Q. et al. Crosstalk between the cGAS DNA sensor and Beclin-1 autophagy protein shapes innate antimicrobial immune responses. Cell Host Microbe 15, 228–238 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao, Y. et al. COX5B regulates MAVS-mediated antiviral signaling through interaction with ATG5 and repressing ROS production. PLoS Pathog. 8, e1003086 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mathew, R. et al. Functional role of autophagy-mediated proteome remodeling in cell survival signaling and innate immunity. Mol. Cell 55, 916–930 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cadwell, K. et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456, 259–263 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cadwell, K. et al. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141, 1135–1145 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kernbauer, E., Ding, Y. & Cadwell, K. An enteric virus can replace the beneficial function of commensal bacteria. Nature 516, 94–98 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Marchiando, A. M. et al. A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection. Cell Host Microbe 14, 216–224 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Grimm, W. A. et al. The Thr300Ala variant in ATG16L1 is associated with improved survival in human colorectal cancer and enhanced production of type I interferon. Gut 65, 456–464 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Lopez, C. A. et al. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration. Science 353, 1249–1253 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lupp, C. et al. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2, 119–129 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Hoffmann, C. et al. Community-wide response of the gut microbiota to enteropathogenic Citrobacter rodentium infection revealed by deep sequencing. Infect. Immun. 77, 4668–4678 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hwang, S. et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 11, 397–409 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi, J. et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 40, 924–935 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marino, G. et al. Autophagy is essential for mouse sense of balance. J. Clin. Invest. 120, 2331–2344 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maurer, K. et al. Autophagy mediates tolerance to Staphylococcus aureus alpha-toxin. Cell Host Microbe 17, 429–440 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cann, G. M. et al. Developmental expression of LC3alpha and beta: absence of fibronectin or autophagy phenotype in LC3beta knockout mice. Dev. Dyn. 237, 187–195 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, Z. H. et al. Autophagy protein microtubule-associated protein 1 light chain-3B (LC3B) activates extrinsic apoptosis during cigarette smoke-induced emphysema. Proc. Natl Acad. Sci. USA 107, 18880–18885 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Inoue, J. et al. Autophagy in the intestinal epithelium regulates Citrobacter rodentium infection. Arch. Biochem. Biophys. 521, 95–101 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Pott, J., Kabat, A. M. & Maloy, K. J. Intestinal epithelial cell autophagy is required to protect against TNF-induced apoptosis during chronic colitis in mice. Cell Host Microbe 23, 191–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Hubbard-Lucey, V. M. et al. Autophagy gene atg16l1 prevents lethal T cell alloreactivity mediated by dendritic cells. Immunity 41, 579–591 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Matsuzawa-Ishimoto, Y. et al. Autophagy protein ATG16L1 prevents necroptosis in the intestinal epithelium. J. Exp. Med. 214, 3687–3705 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Murthy, A. et al. A Crohn’s disease variant in Atg16l1 enhances its degradation by caspase 3. Nature 506, 456–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Lassen, K. G. et al. Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense. Proc. Natl Acad. Sci. USA 111, 7741–7746 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Zhang, H. et al. Myeloid ATG16L1 facilitates host–bacteria interactions in maintaining intestinal homeostasis. J. Immunol. 198, 2133–2146 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao, P. et al. The inflammatory bowel disease-associated autophagy gene Atg16L1T300A acts as a dominant negative variant in mice. J. Immunol. 198, 2457–2467 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. Putt, K. S. et al. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nat. Chem. Biol. 2, 543–550 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Konno, H., Konno, K. & Barber, G. N. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155, 688–698 (2013).

    Article  CAS  Google Scholar 

  33. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Moretti, J. et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell 171, 809–823 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Prabakaran, T. et al. Attenuation of cGAS-STING signaling is mediated by a p62/SQSTM1-dependent autophagy pathway activated by TBK1. EMBO J. 37, e97858 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Sun, L. et al. Type I interferons link viral infection to enhanced epithelial turnover and repair. Cell Host Microbe 17, 85–97 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Kamada, N. et al. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 336, 1325–1329 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim, Y. G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Van den Bossche, J., O’Neill, L. A. & Menon, D. Macrophage immunometabolism: where are we (going)? Trends Immunol. 38, 395–406 (2017).

    Article  CAS  PubMed  Google Scholar 

  40. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, Z. et al. Role of inflammasomes in host defense against Citrobacter rodentium infection. J. Biol. Chem. 287, 16955–16964 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lan, Y. Y., Londono, D., Bouley, R., Rooney, M. S. & Hacohen, N. Dnase2a deficiency uncovers lysosomal clearance of damaged nuclear DNA via autophagy. Cell Rep. 9, 180–192 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zeng, M. Y. et al. Gut microbiota-induced immunoglobulin G controls systemic infection by symbiotic bacteria and pathogens. Immunity 44, 647–658 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li, X. D. et al. Mitochondrial antiviral signaling protein (MAVS) monitors commensal bacteria and induces an immune response that prevents experimental colitis. Proc. Natl Acad. Sci. USA 108, 17390–17395 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Steed, A. L. et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science 357, 498–502 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Samie, M. et al. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nat. Immunol. 19, 246–254 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Gentle, I. E. et al. TIR-domain-containing adapter-inducing interferon-beta (TRIF) forms filamentous structures, whose pro-apoptotic signalling is terminated by autophagy. FEBS J. 284, 1987–2003 (2017).

    Article  CAS  PubMed  Google Scholar 

  48. Yang, Q. et al. TRIM32-TAX1BP1-dependent selective autophagic degradation of TRIF negatively regulates TLR3/4-mediated innate immune responses. PLoS Pathog. 13, e1006600 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benjamin, J. L., Sumpter, R. Jr, Levine, B. & Hooper, L. V. Intestinal epithelial autophagy is essential for host defense against invasive bacteria. Cell Host Microbe 13, 723–734 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Conway, K. L. et al. Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection. Gastroenterology 145, 1347–1357 (2013).

    Article  CAS  PubMed  Google Scholar 

  51. Kimmey, J. M. et al. Unique role for ATG5 in neutrophil-mediated immunopathology during M. tuberculosis infection. Nature 528, 565–569 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl Acad. Sci. USA 108, 4516–4522 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vazquez-Baeza, Y., Pirrung, M., Gonzalez, A. & Knight, R. EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2, 16 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following NYU facilities for use of their instruments and technical assistance: the Microscopy Core (RR023704), the Histopathology and Immunohistochemistry Core (P30CA016087, NIH S10 OD010584-01A1 and S10 OD018338-01), the Cytometry and Cell Sorting Laboratory (P30CA016087), the Genome Technology Center (P30CA016087) and the Gnotobiotic Facility (Colton Center for Autoimmunity). This work was supported by US National Institute of Health (NIH) grants R01 HL123340 (K.C.), R01 DK093668 (K.C.), R01 DK103788 (K.C.), R01 AI121244 (K.C.), F31 DK111139 (P.K.M.) and T32 AI100853 (E.R.), a Faculty Scholar grant from the Howard Hughes Medical Institute (K.C.), an Advanced Research Grant from the Merieux Institute (K.C.), a Rainin Foundation Innovator Award (K.C.), the Stony Wold-Herbert Fund (K.C.) and philanthropy from B. Levine (K.C.), and a Crohn’s & Colitis Foundation Research Fellowship Award (A.M.). K.C. is a Burroughs Wellcome Fund Investigator in the Pathogenesis of Infectious Diseases.

Author information

Authors and Affiliations

Authors

Contributions

P.K.M., A.M. and K.C. formulated the original hypothesis, designed the study and analysed the results. E.R. assisted with transcriptomics analyses. R.X. performed histopathology analyses. E.K. assisted with experiments involving GF mice. S.L.S. and F.Y. assisted with analyses of microbial communities. P.K.M. and K.C. wrote the manuscript, and all authors commented on the manuscript, data and conclusions.

Corresponding author

Correspondence to Ken Cadwell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–6.

Reporting Summary

Supplementary Table 1

Gene expression dataset, related to Fig. 6. Shown are normalized log2 expression values for 812 altered genes from infiltrating inflammatory monocytes isolated from the colon of day 9 C. rodentium-infected WT and Atg16L1HM mice.

Supplementary Table 2

A dataset showing the exact P value for all graphs in this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, P.K., Marchiando, A., Xu, R. et al. Autophagy proteins suppress protective type I interferon signalling in response to the murine gut microbiota. Nat Microbiol 3, 1131–1141 (2018). https://doi.org/10.1038/s41564-018-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41564-018-0229-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing