Quantification of diverse virus populations in the environment using the polony method


Viruses are globally abundant and extremely diverse in their genetic make-up and in the hosts they infect. Although they influence the abundance, diversity and evolution of their hosts, current methods are inadequate for gaining a quantitative understanding of their impact on these processes. Here we report the adaptation of the solid-phase single-molecule PCR polony method for the quantification of taxonomically relevant groups of diverse viruses. Using T7-like cyanophages as our model, we found the polony method to be far superior to regular quantitative PCR methods and droplet digital PCR when degenerate primers were used to encompass the group’s diversity. This method revealed that T7-like cyanophages were highly abundant in the Red Sea in spring 2013, reaching 770,000 phages ml−1, and displaying a similar depth distribution pattern to cyanobacteria. Furthermore, the abundances of two major clades within the T7-like cyanophages differed dramatically throughout the water column: clade B phages that carry the psbA photosynthesis gene and infect either Synechococcus or Prochlorococcus were at least 20-fold more abundant than clade A phages that lack psbA and infect Synechococcus hosts. Such measurements are of paramount importance for understanding virus population dynamics and the impact of viruses on different microbial taxa and for modelling viral influence on ecosystem functioning on a global scale.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Development of the polony method for viral ecology.
Fig. 2: Comparison of the polony method with other quantitative PCR methods.
Fig. 3: Analysis of T7-like cyanophages in coastal waters from the Red Sea using the polony method.
Fig. 4: Neighbour-joining tree of the DNA polymerase gene from T7-like cyanophages and sequenced polonies.
Fig. 5: Depth profiles of T7-like cyanophages and cyanobacteria collected from the Gulf of Aqaba, Red Sea during the spring bloom on 4 April 2013.


  1. 1.

    Bergh, O., Borsheim, K. Y., Bratbak, G. & Heldal, M. High abundance of viruses found in aquatic environments. Nature 340, 467–468 (1989).

    CAS  PubMed  Google Scholar 

  2. 2.

    Proctor, L. M. & Fuhrman, J. A. Viral mortality of marine bacteria and cyanobacteria. Nature 343, 60–62 (1990).

    Google Scholar 

  3. 3.

    Suttle, C. A. Marine viruses—major players in the global ecosystem. Nat. Rev. Microbiol. 5, 801–812 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Breitbart, M. Marine viruses: truth or dare. Ann. Rev. Mar. Sci. 4, 425–448 (2012).

    PubMed  Google Scholar 

  5. 5.

    Güemes, A. G. C. et al. Viruses as winners in the game of life. Ann. Rev. Virol. 3, 197–214 (2016).

    Google Scholar 

  6. 6.

    Zablocki, O., Adrianenssens, E. M. & Cowan, D. Diversity and ecology of viruses in hyperarid desert soils. Appl. Environ. Microb. 82, 770–777 (2016).

    CAS  Google Scholar 

  7. 7.

    Breitbart, M. et al. Metagenomic analyses of an uncultured viral community from human feces. J. Bacteriol. 185, 6220–6223 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Reyes, A. et al. Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466, 334–338 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Patel, A. et al. Virus and prokaryote enumeration from planktonic aquatic environments by epifluorescnce microscopy with SYBR Green I. Nat. Protoc. 2, 269–276 (2007).

    CAS  PubMed  Google Scholar 

  11. 11.

    Brussaard, C. P. D. Optimization of procedures for counting viruses by flow cytometry. Appl. Environ. Microbiol. 70, 1506–1513 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Bratbak, G. & Heldal, M. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. et al.) Ch. 16, 135–138 (CRC Press, Boca Raton, 1993).

  13. 13.

    Suttle, C. A. in Handbook of Methods in Aquatic Microbial Ecology (eds Kemp, P. et al.) Ch. 15, 121–134 (CRC Press, Boca Raton, 1993).

  14. 14.

    Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

    CAS  PubMed  Google Scholar 

  15. 15.

    Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).

    CAS  PubMed  Google Scholar 

  16. 16.

    Dekel-Bird, N. P., Sabehi, G., Mosevitzky, B. & Lindell, D. Host-dependent differences in abundance, composition and host range of cyanophages from the Red Sea. Environ. Microbiol. 17, 1286–1299 (2015).

    CAS  PubMed  Google Scholar 

  17. 17.

    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host-phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).

    CAS  PubMed  Google Scholar 

  18. 18.

    Rozon, R. M. & Short, S. M. Complex seasonality observed amongst diverse phytoplankton viruses in the Bay of Quinte, an embayment of Lake Ontario. Freshwater Biol. 58, 2648–2663 (2013).

    CAS  Google Scholar 

  19. 19.

    Tadmor, A. D., Ottesen, E. A., Leadbetter, J. R. & Phillips, R. Probing individual environmental bacteria for viruses by using microfluidic digital PCR. Science 333, 58–62 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Pinheiro, L. B. et al. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal. Chem. 84, 1003–1011 (2012).

    CAS  PubMed  Google Scholar 

  21. 21.

    Cai, T., Lou, G. Q., Yang, J., Xu, D. & Meng, Z. H. Development and evaluation of real-time loop-mediated isothermal amplification for hepatitis B virus DNA quantification: a new tool for HBV management. J. Clin. Virol. 41, 270–276 (2008).

    CAS  PubMed  Google Scholar 

  22. 22.

    Yang, H. L. et al. A novel method of real-time reverse-transcription loop-mediated isothermal amplification developed for rapid and quantitative detection of a new genotype (YHV-8) of yellow head virus. Lett. Appl. Microbiol. 63, 103–110 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Allers, E. et al. Single-cell and population level viral infection dynamics revealed by phageFISH, a method to visualize intracellular and free viruses. Environ. Microbiol. 15, 2306–2318 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Polz, M. F. & Cavanaugh, C. M. Bias in template-to-product ratios in multitemplate PCR. Appl. Environ. Microbiol. 64, 3724–3730 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Brankatschk, R., Bodenhausen, N., Zeyer, J. & Bürgmannc, H. Simple absolute quantification method correcting for quantitative PCR efficiency variations for microbial community samples. Appl. Environ. Microb. 78, 4481–4489 (2012).

    CAS  Google Scholar 

  26. 26.

    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Roux, S. et al. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses. PeerJ 4, e2777 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Mitra, R. D. & Church, G. M. In situ localized amplification and contact replication of many individual DNA molecules. Nucl. Acids Res. 27, e34 (1999).

    CAS  PubMed  Google Scholar 

  29. 29.

    Sullivan, M. B., Coleman, M., Weigele, P., Rohwer, F. & Chisholm, S. W. Three Prochlorococcus cyanophage genomes: signature features and ecological interpretations. PLoS Biol. 3, 790–806 (2005).

    CAS  Google Scholar 

  30. 30.

    Labrie, S. J. et al. Genomes of marine cyanopodoviruses reveal multiple origins of diversity. Environ. Microbiol. 15, 1356–1376 (2013).

    CAS  PubMed  Google Scholar 

  31. 31.

    Lindell, D. et al. Genome-wide expression dynamics of a marine virus and host reveal features of co-evolution. Nature 449, 83–86 (2007).

    CAS  PubMed  Google Scholar 

  32. 32.

    Wang, K. & Chen, F. Prevalence of highly host-specific cyanophages in the estuarine environment. Environ. Microbiol. 10, 300–312 (2008).

    CAS  PubMed  Google Scholar 

  33. 33.

    Raytcheva, D. A., Haase-Pettingell, C., Piret, J. M. & King, J. A. Intracellular assembly of cyanophage Syn5 proceeds through a scaffold-containing procapsid. J. Virol. 85, 2406–2415 (2011).

    CAS  PubMed  Google Scholar 

  34. 34.

    Flombaum, P. et al. Present and future global distributions of the marine cyanobacteria Prochlorococcus and Synechococcus. Proc. Natl Acad. Sci. USA 110, 9824–9829 (2013).

    CAS  PubMed  Google Scholar 

  35. 35.

    Dekel-Bird, N. P. et al. Diversity and evolutionary relationships of T7-like podoviruses infecting marine cyanobacteria. Environ. Microbiol. 15, 1476–1491 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Sullivan, M. B., Waterbury, J. B. & Chisholm, S. W. Cyanophages infecting the oceanic cyanobacterium Prochlorococcus. Nature 424, 1047–1051 (2003).

    CAS  PubMed  Google Scholar 

  37. 37.

    Waterbury, J. B. & Valois, F. W. Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophage abundant in seawater. Appl. Environ. Microbiol. 59, 3393–3399 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Huang, S., Zhang, S., Jiao, N. & Chen, F. Marine cyanophages demonstrate biogeographic patterns throughout the global ocean. Appl. Environ. Microbiol. 81, 441–452 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Breitbart, M., Miyake, J. H. & Rohwer, F. Global distribution of nearly identical phage-encoded DNA sequences. FEMS Microbiol. Lett. 236, 249–256 (2004).

    CAS  PubMed  Google Scholar 

  40. 40.

    Labonte, J. M., Reid, K. E. & Suttle, C. A. Phylogenetic analysis indicates evolutionary diversity and environmental segregation of marine podovirus DNA polymerase gene sequences. Appl. Environ. Microbiol. 75, 3634–3640 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    John, S. G. et al. A simple and efficient method for concentration of ocean viruses by chemical flocculation. Environ. Microbiol. Rep. 3, 195–202 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Matteson, A. R. et al. High abundances of cyanomyoviruses in marine ecosystems demonstrate ecological relevance. FEMS Microb. Ecol. 84, 223–234 (2013).

    CAS  Google Scholar 

  43. 43.

    Lindell, D. & Post, A. F. Ultraphytoplankton succession is triggered by deep winter mixing in the Gulf of Aqaba (Eilat), Red Sea. Limnol. Oceanogr. 40, 1130–1141 (1995).

    Google Scholar 

  44. 44.

    Carlson, D. F., Fredg, E. & Gildor, H. The annual cycle of vertical mixing and restratification in the Northern Gulf of Eilat/Aqaba (Red Sea) based on high temporal and vertical resolution observations. Deep Sea Res. I 84, 1–17 (2014).

    Google Scholar 

  45. 45.

    Sabehi, G. et al. A novel lineage of myoviruses infecting marine cyanobacteria is widespread in the oceans. Proc. Natl Acad. Sci. USA 109, 2037–2042 (2012).

    CAS  PubMed  Google Scholar 

  46. 46.

    Chen, F. et al. Diverse and dynamic populations of cyanobacterial podoviruses in the Chesapeake Bay unveiled through DNA polymerase gene sequences. Environ. Microbiol. 11, 2884–2892 (2009).

    PubMed  Google Scholar 

  47. 47.

    Zheng, Q., Jiao, N., Zhang, R., Chen, F. & Suttle, C. A. Prevalence of psbA-containing cyanobacterial podoviruses in the ocean. Sci. Rep. 3, 3207 (2013).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Bragg, J. G. & Chisholm, S. W. Modeling the fitness consequences of a cyanophage-encoded photosynthesis gene. PLoS ONE 3, e3550 (2008).

    PubMed  PubMed Central  Google Scholar 

  49. 49.

    Hellweger, F. Carrying photosynthesis genes increases ecological fitness of cyanophage in silico. Environ. Microbiol. 11, 1386–1394 (2009).

    CAS  PubMed  Google Scholar 

  50. 50.

    Rasband, W. S. ImageJ (US National Institutes of Health, Bethesda, Maryland, USA, 1997–2014); http://imagej.nih.gov/ij/

  51. 51.

    DeFlaun, M. F., Paul, J. H. & Jeffrey, W. H. Distribution and molecular weight of dissolved DNA in subtropical estuarine and oceanic environments. Mar. Ecol. Prog. Ser. 38, 65–73 (1987).

    CAS  Google Scholar 

  52. 52.

    Kumar, S., Steher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    R Development Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, Vienna, Austria, 2013); http://www.R-project.org

Download references


We thank K. Zhang and G. Church for help with initial set-up of the polony method in our laboratory, B. Cunningham for advice on iron chloride flocculation, Lindell laboratory members for many helpful discussions and ideas during the development of the method, I. Izhaki, G. Yahel and M. Bocharenko for advice on statistical analyses, R. Kishony for use of laboratory facilities, and the Interuniversity Institute for Marine Sciences of Eilat and the Ruppin School of Marine Sciences for access to sampling facilities and B. Mosevitzky for sample collection in September 2012. We also thank S. Avrani, O. Beja, M. Breitbart, M. Carlson, Y. Mandel-Gutfreund, G. Sabehi, D. Schwartz, D. Shitrit and J. Weitz for comments on this or an earlier version of the manuscript. This research was funded by European Council FP6 Marie Curie Reintegration grant no. 046549, Israel Science Foundation Individual grant no. 749/11, European Research Council Consolidator Grant 646868 and the Mallat Family Fund and Cullen Fund from the Technion awarded to D.L.

Author information




N.B. set up the polony method for viruses. N.B., S.G and I.M. designed, performed and analysed the experiments for method optimization and validation as well as field analyses, and contributed to writing of the manuscript. D.L. conceived the project, participated in experimental design and wrote the manuscript.

Corresponding author

Correspondence to Debbie Lindell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Information

Supplementary Results and Discussion, Figures and Tables.

Life Sciences Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baran, N., Goldin, S., Maidanik, I. et al. Quantification of diverse virus populations in the environment using the polony method. Nat Microbiol 3, 62–72 (2018). https://doi.org/10.1038/s41564-017-0045-y

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing