Mosquito-borne viruses can cause severe inflammatory diseases and there are limited therapeutic solutions targeted specifically at virus-induced inflammation. Chikungunya virus (CHIKV), a re-emerging alphavirus responsible for several outbreaks worldwide in the past decade, causes debilitating joint inflammation and severe pain. Here, we show that CHIKV infection activates the NLRP3 inflammasome in humans and mice. Peripheral blood mononuclear cells isolated from CHIKV-infected patients showed elevated NLRP3, caspase-1 and interleukin-18 messenger RNA expression and, using a mouse model of CHIKV infection, we found that high NLRP3 expression was associated with peak inflammatory symptoms. Inhibition of NLRP3 activation using the small-molecule inhibitor MCC950 resulted in reduced CHIKV-induced inflammation and abrogated osteoclastogenic bone loss and myositis, but did not affect in vivo viral replication. Mice treated with MCC950 displayed lower expression levels of the cytokines interleukin-6, chemokine ligand 2 and tumour necrosis factor in joint tissue. Interestingly, MCC950 treatment abrogated disease signs in mice infected with a related arthritogenic alphavirus, Ross River virus, but not in mice infected with West Nile virus—a flavivirus. Here, using mouse models of alphavirus-induced musculoskeletal disease, we demonstrate that NLRP3 inhibition in vivo can reduce inflammatory pathology and that further development of therapeutic solutions targeting inflammasome function could help treat arboviral diseases.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Guo, H., Callaway, J. B. & Ting, J. P.-Y. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat. Med. 21, 677–687 (2015).

  2. 2.

    Finlay, B. B. & McFadden, G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 124, 767–782 (2006).

  3. 3.

    Kanneganti, T.-D. Central roles of NLRs and inflammasomes in viral infection. Nat. Rev. Immunol. 10, 688–698 (2010).

  4. 4.

    Morrison, T. E. et al. Characterization of Ross River virus tropism and virus-induced inflammation in a mouse model of viral arthritis and myositis. J. Virol. 80, 737–749 (2005).

  5. 5.

    Ekchariyawat, P. et al. Inflammasome signaling pathways exert antiviral effect against chikungunya virus in human dermal fibroblasts. Infect. Genet. Evol. 32, 401–408 (2015).

  6. 6.

    McAuley, J. L. et al. Activation of the NLRP3 inflammasome by IAV virulence protein PB1-F2 contributes to severe pathophysiology and disease. PLoS Pathog. 9, e1003392 (2013).

  7. 7.

    Chakrabarti, A. et al. RNase L activates the NLRP3 inflammasome during viral infections. Cell Host Microbe 17, 466–477 (2015).

  8. 8.

    Ichinohe, T., Lee, H. K., Ogura, Y., Flavell, R. & Iwasaki, A. Inflammasome recognition of influenza virus is essential for adaptive immune responses. J. Exp. Med. 206, 79–87 (2009).

  9. 9.

    Negash, A. A. et al. IL-1β production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PloS Pathog. 9, e1003330 (2013).

  10. 10.

    Johnson, K. E., Chikoti, L. & Chandran, B. Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J. Virol. 87, 5005–5018 (2013).

  11. 11.

    Getts, D. R. et al. Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Sci. Transl. Med. 6, 219ra7 (2014).

  12. 12.

    Griffin, D. E. Alphaviruses. Encyclopedia Of Molecular Medicine (John Wiley & Sons, Hoboken, NJ, 2002).

  13. 13.

    Suhrbier, A., Jaffar-Bandjee, M.-C. & Gasque, P. Arthritogenic alphaviruses—an overview. Nat. Rev. Rheumatol. 8, 420–429 (2012).

  14. 14.

    Suhrbier, A. & La Linn, M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr. Opin. Rheumatol. 16, 374–379 (2004).

  15. 15.

    Manimunda, S. P. et al. Clinical progression of chikungunya fever during acute and chronic arthritic stages and the changes in joint morphology as revealed by imaging. Trans. R. Soc. Trop. Med. Hyg. 104, 392–399 (2010).

  16. 16.

    Chen, I.-Y. & Ichinohe, T. Response of host inflammasomes to viral infection. Trends Microbiol. 23, 55–63 (2015).

  17. 17.

    Cao-Lormeau, V.-M. & Musso, D. Emerging arboviruses in the Pacific. Lancet 384, 1571–1572 (2014).

  18. 18.

    Chen, W. et al. Arthritogenic alphaviruses: new insights into arthritis and bone pathology. Trends Microbiol. 23, 35–43 (2015).

  19. 19.

    Coll, R. C. et al. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat. Med. 21, 248–255 (2015).

  20. 20.

    Taylor, A., Herrero, L. J., Rudd, P. A. & Mahalingam, S. Mouse models of alphavirus-induced inflammatory disease. J. Gen. Virol. 96, 221–238 (2015).

  21. 21.

    Kaushik, D. K., Gupta, M., Kumawat, K. L. & Basu, A. NLRP3 inflammasome: key mediator of neuroinflammation in murine Japanese encephalitis. PLoS ONE 7, e32270 (2012).

  22. 22.

    Nakaya, H. I. et al. Gene profiling of chikungunya virus arthritis in a mouse model reveals significant overlap with rheumatoid arthritis. Arthritis Rheum. 64, 3553–3563 (2012).

  23. 23.

    Ryman, K. D. & Klimstra, W. B. Closing the gap between viral and noninfectious arthritis. Proc. Natl Acad. Sci. USA 111, 5767–5768 (2014).

  24. 24.

    Chen, W. et al. Arthritogenic alphaviral infection perturbs osteoblast function and triggers pathologic bone loss. Proc. Natl Acad. Sci. USA 111, 6040–6045 (2014).

  25. 25.

    Xing, L., Schwarz, E. M. & Boyce, B. F. Osteoclast precursors, RANKL/RANK, and immunology. Immunol. Rev. 208, 19–29 (2005).

  26. 26.

    Cao, Y. et al. Osterix, a transcription factor for osteoblast differentiation, mediates antitumor activity in murine osteosarcoma. Cancer Res. 65, 1124–1128 (2005).

  27. 27.

    Pinzone, J. J. et al. The role of dickkopf-1 in bone development, homeostasis, and disease. Blood 113, 517–525 (2009).

  28. 28.

    Zou, L. et al. Use of RUNX2 expression to identify osteogenic progenitor cells derived from human embryonic stem cells. Stem Cell Reports 4, 190–198 (2015).

  29. 29.

    Gubler, D. J. Human arbovirus infections worldwide. Ann. NY Acad. Sci 951, 13–24 (2001).

  30. 30.

    Getts, D. R. et al. Ly6c+ ‘inflammatory monocytes’ are microglial precursors recruited in a pathogenic manner in West Nile virus encephalitis. J. Exp. Med. 205, 2319–2337 (2008).

  31. 31.

    Weaver, S. C. & Barrett, A. D. T. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat. Rev. Microbiol. 2, 789–801 (2004).

  32. 32.

    Musso, D. & Gubler, D. J. Zika virus. Clin. Microbiol. Rev. 29, 487–524 (2016).

  33. 33.

    Shepard, D. S. Cost and burden of dengue and chikungunya from the Americas to Asia. Dengue Bull. 34, 1–5 (2010).

  34. 34.

    Dubrulle, M., Mousson, L., Moutailler, S., Vazeille, M. & Failloux, A.-B. Chikungunya virus and Aedes mosquitoes: saliva is infectious as soon as two days after oral infection. PloS ONE 4, e5895 (2009).

  35. 35.

    Styer, L. M. et al. Mosquitoes inoculate high doses of West Nile virus as they probe and feed on live hosts. PloS Pathog. 3, 1262–1270 (2007).

  36. 36.

    Chen, W. et al. Bindarit, an inhibitor of monocyte chemotactic protein synthesis, protects against bone loss induced by chikungunya virus infection. J. Virol. 89, 581–593 (2015).

  37. 37.

    Chen, W., Foo, S.-S., Li, R. W., Smith, P. N. & Mahalingam, S. Osteoblasts from osteoarthritis patients show enhanced susceptibility to Ross River virus infection associated with delayed type I interferon responses. Virol. J. 11, 189 (2014).

  38. 38.

    Enomoto, H. et al. Induction of osteoclast differentiation by Runx2 through receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin regulation and partial rescue of osteoclastogenesis in Runx2–/– mice by RANKL transgene. J. Biol. Chem. 278, 23971–23977 (2003).

  39. 39.

    Poo, Y.-S. et al. Multiple immune factors are involved in controlling acute and chronic chikungunya virus infection. PLoS Negl. Trop. Dis. 8, e3354 (2014).

  40. 40.

    Rulli, N. E. et al. Amelioration of alphavirus-induced arthritis and myositis in a mouse model by treatment with bindarit, an inhibitor of monocyte chemotactic proteins. Arthritis Rheum. 60, 2513–2523 (2009).

  41. 41.

    Rulli, N. E. et al. Protection from arthritis and myositis in a mouse model of acute chikungunya virus disease by bindarit, an inhibitor of monocyte chemotactic protein-1 synthesis. J. Infect. Dis 204, 1026–1030 (2011).

  42. 42.

    Poo, Y.-S. et al. CCR2 deficiency promotes exacerbated chronic erosive neutrophil-dominated chikungunya virus arthritis. J. Virol. 88, 6862–6872 (2014).

  43. 43.

    Seregin, S. S. et al. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal. Immunol. 10, 434–445 (2017).

  44. 44.

    Ramos, H. J. et al. IL-1β signaling promotes CNS-intrinsic immune control of West Nile virus infection. PLoS Pathog. 8, e1003039 (2012).

  45. 45.

    Vande Walle, L. et al. Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature 512, 69–73 (2014).

  46. 46.

    Bonar, S. L. et al. Constitutively activated NLRP3 inflammasome causes inflammation and abnormal skeletal development in mice. PLoS ONE 7, e35979 (2012).

  47. 47.

    Gurung, P., Burton, A. & Kanneganti, T.-D. NLRP3 inflammasome plays a redundant role with caspase 8 to promote IL-1β-mediated osteomyelitis. Proc. Natl Acad. Sci. USA 113, 4452–4457 (2016).

  48. 48.

    Qu, C. et al. NLRP3 mediates osteolysis through inflammation-dependent and -independent mechanisms. FASEB J. 29, 1269–1279 (2015).

  49. 49.

    Wikan, N. et al. Comprehensive proteomic analysis of white blood cells from chikungunya fever patients of different severities. J. Transl. Med. 12, 96 (2014).

  50. 50.

    Chow, A. et al. Persistent arthralgia induced by chikungunya virus infection is associated with interleukin-6 and granulocyte macrophage colony-stimulating factor. J. Infect. Dis 203, 149–157 (2011).

  51. 51.

    Gardner, J. et al. Chikungunya virus arthritis in adult wild-type mice. J. Virol. 84, 8021–8032 (2010).

  52. 52.

    Dempster, D. W. et al. Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J. Bone Miner. Res. 28, 2–17 (2013).

Download references


We thank S. Masters (the Walter and Eliza Hall Institute of Medical Research) for kindly providing the caspase-1–/– and ASC–/– mice. This study was supported by grants from the Australian National Health and Medical Research Council (NHMRC) to S.M. (APP1079086). S.M. is the recipient of an NHMRC Senior Research Fellowship (APP1059167) and A.S. is the recipient of an NHMRC Principal Research Fellowship (APP1058391).

Author information

Author notes

    • Weiqiang Chen
    •  & Suan-Sin Foo

    Present address: Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA

  1. Weiqiang Chen, Suan Sin Foo and Ali Zaid contributed equally to this work.


  1. Emerging Viruses and Inflammation Research Group, Institute for Glycomics, Griffith University, Gold Coast, QLD, 4222, Australia

    • Weiqiang Chen
    • , Suan-Sin Foo
    • , Ali Zaid
    • , Lara J. Herrero
    • , Stefan Wolf
    • , Kothila Tharmarajah
    • , Adam Taylor
    • , Joseph R. Freitas
    •  & Suresh Mahalingam
  2. Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore

    • Terk-Shin Teng
    •  & Lisa F. P. Ng
  3. Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK

    • Terk-Shin Teng
    •  & Lisa F. P. Ng
  4. Discipline of Pathology, Bosch Institute, School of Medical Sciences, Sydney Medical School, Charles Perkins Centre, University of Sydney, Camperdown, NSW, 2006, Australia

    • Luan D. Vu
    • , Caryn van Vreden
    •  & Nicholas J. King
  5. The Medical School, The Australian National University, Acton, ACT, 2601, Australia

    • Rachel W. Li
  6. Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, 2601, Australia

    • Rachel W. Li
  7. School of Biomedical Science, The University of Queensland, Australia, St Lucia, QLD, 4072, Australia

    • Trent M. Woodruff
    •  & Richard Gordon
  8. Department of Biomedical Sciences, University of the Pacific, San Francisco, CA, 94103, USA

    • David M. Ojcius
  9. Department of Pathophysiology and Toxicology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, CEP 05508-000, Brazil

    • Helder I. Nakaya
  10. Department of Immunology, St Jude’s Children’s Hospital, Memphis, TN, 38105, USA

    • Thirumala-Devi Kanneganti
  11. Trinity Biomedical Sciences Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin, 2, Ireland

    • Luke A. J. O’Neill
  12. Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia

    • Avril A. B. Robertson
    •  & Matthew A. Cooper
  13. Inflammation Biology Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia

    • Andreas Suhrbier


  1. Search for Weiqiang Chen in:

  2. Search for Suan-Sin Foo in:

  3. Search for Ali Zaid in:

  4. Search for Terk-Shin Teng in:

  5. Search for Lara J. Herrero in:

  6. Search for Stefan Wolf in:

  7. Search for Kothila Tharmarajah in:

  8. Search for Luan D. Vu in:

  9. Search for Caryn van Vreden in:

  10. Search for Adam Taylor in:

  11. Search for Joseph R. Freitas in:

  12. Search for Rachel W. Li in:

  13. Search for Trent M. Woodruff in:

  14. Search for Richard Gordon in:

  15. Search for David M. Ojcius in:

  16. Search for Helder I. Nakaya in:

  17. Search for Thirumala-Devi Kanneganti in:

  18. Search for Luke A. J. O’Neill in:

  19. Search for Avril A. B. Robertson in:

  20. Search for Nicholas J. King in:

  21. Search for Andreas Suhrbier in:

  22. Search for Matthew A. Cooper in:

  23. Search for Lisa F. P. Ng in:

  24. Search for Suresh Mahalingam in:


W.C., L.F.P.N. and S.M. conceptualized and designed the study. W.C., S-S.F., A.Z., S.W., L.J.H., K.T., A.T. and J.R.F. performed the mouse CHIKV and RRV experiments and analysed the data. L.D.V. and C.v.V. performed the mouse WNV experiments and analysed the data. R.W.L. performed the bone computed tomography experiments and analysed the data. T.M.W. and R.G. performed MCC950 pharmacokinetics experiments and analysed the data. D.M.O., H.I.N., T-D.K., L.A.J.O., A.A.B.R., N.J.K., A.S. and M.A.C. provided the materials and analysis methods. A.Z. wrote the manuscript. A.Z., R.W.L., N.J.K., A.S., L.F.P.N., M.A.C. and S.M. reviewed and revised the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Suresh Mahalingam.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Figures 1–7, Supplementary Table 1, Supplementary References.

About this article

Publication history






Further reading