Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Experimental observation of current-driven antiskyrmion sliding in stripe domains

Abstract

Magnetic skyrmions are promising as next-generation information units. Their antiparticle—the antiskyrmion—has also been discovered in chiral magnets. Here we experimentally demonstrate antiskyrmion sliding in response to a pulsed electric current at room temperature without the requirement of an external magnetic field. This is realized by embedding antiskyrmions in helical stripe domains, which naturally provide one-dimensional straight tracks along which antiskyrmion sliding can be easily launched with low current density and without transverse deflection from the antiskyrmion Hall effect. The higher mobility of the antiskyrmions in the background of helical stripes in contrast to the typical ferromagnetic state is a result of intrinsic material parameters and elastic energy of the stripe domain, thereby smearing out the random pinning potential, as supported by micromagnetic simulations. The demonstration and comprehensive understanding of antiskyrmion movement along naturally straight tracks offers a new perspective for (anti)skyrmion application in spintronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Realization of room-temperature antiskyrmions with different magnetization states and their straight current-driven behaviour along the naturally helical stripes at zero field in a Mn1.4PtSn chiral magnet.
Fig. 2: Room-temperature antiskyrmion sliding along the straight stripe domain at a current density of je = 4.3 × 109 A m−2 but with two opposite directions at zero field.
Fig. 3: Collective sliding of antiskyrmion and antiskyrmion dimer (Q = 2) along a straight stripe in Mn1.4PtSn thin plate at zero field and room temperature.
Fig. 4: Current-driven behaviour of room-temperature meron pair along a helical stripe at zero field in Mn1.4PtSn chiral magnet.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Any other relevant data are available from the corresponding authors upon reasonable request.

References

  1. Bogdanov, A. N. & Yablonskii, D. Thermodynamically stable ‘vortices’ in magnetically ordered crystals. The mixed state of magnets. Zh. Eksp. Teor. Fiz. 95, 178–182 (1989).

    Google Scholar 

  2. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Article  PubMed  Google Scholar 

  3. Yu, X. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Koshibae, W. & Nagaosa, N. Theory of antiskyrmions in magnets. Nat. Commun. 7, 10542 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nayak, A. K. et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials. Nature 548, 561–566 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    Article  CAS  Google Scholar 

  7. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmion dynamics in constricted geometries. Nat. Nanotechnol. 8, 742–747 (2013).

    Article  CAS  PubMed  Google Scholar 

  8. Tomasello, R. et al. A strategy for the design of skyrmion racetrack memories. Sci. Rep. 4, 6784 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Parkin, S. & Yang, S.-H. Memory on the racetrack. Nat. Nanotechnol. 10, 195–198 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  11. Zhou, Y. Magnetic skyrmions: intriguing physics and new spintronic device concepts. Natl Sci. Rev. 6, 210–212 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Schulz, T. et al. Emergent electrodynamics of skyrmions in a chiral magnet. Nat. Phys. 8, 301–304 (2012).

    Article  CAS  Google Scholar 

  14. Leonov, A. et al. The properties of isolated chiral skyrmions in thin magnetic films. New J. Phys. 18, 065003 (2016).

    Article  Google Scholar 

  15. Hoffmann, M. et al. Antiskyrmions stabilized at interfaces by anisotropic Dzyaloshinskii–Moriya interactions. Nat. Commun. 8, 308 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kovalev, A. A. & Sandhoefner, S. Skyrmions and antiskyrmions in quasi-two-dimensional magnets. Front. Phys. 6, 98 (2018).

  17. Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotechnol. 8, 839–844 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Müller, J. et al. Magnetic skyrmions and skyrmion clusters in the helical phase of Cu2OSeO3. Phys. Rev. Lett. 119, 137201 (2017).

    Article  PubMed  Google Scholar 

  20. Karube, K. et al. Room-temperature antiskyrmions and sawtooth surface textures in a non-centrosymmetric magnet with S4 symmetry. Nat. Mater. 20, 335–340 (2021).

    Article  CAS  PubMed  Google Scholar 

  21. Saha, R. et al. Intrinsic stability of magnetic anti-skyrmions in the tetragonal inverse Heusler compound Mn1.4Pt0.9Pd0.1Sn. Nat. Commun. 10, 5305 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Huang, S. et al. Stabilization and current-induced motion of antiskyrmion in the presence of anisotropic Dzyaloshinskii–Moriya interaction. Phys. Rev. B 96, 144412 (2017).

    Article  Google Scholar 

  23. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    Article  CAS  Google Scholar 

  24. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2017).

    Article  CAS  Google Scholar 

  25. He, Z. et al. Visualizing emergent magnetic flux of antiskyrmions in Mn1.4PtSn magnet. Adv. Funct. Mater. 32, 2112661 (2022).

    Article  CAS  Google Scholar 

  26. Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Reichhardt, C. & Reichhardt, C. O. Depinning and nonequilibrium dynamic phases of particle assemblies driven over random and ordered substrates: a review. Rep. Prog. Phys. 80, 026501 (2016).

    Article  PubMed  Google Scholar 

  28. Vir, P. et al. Tetragonal superstructure of the antiskyrmion hosting Heusler compound Mn1.4PtSn. Chem. Mater. 31, 5876–5880 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, T. et al. Tunable magnetic antiskyrmion size and helical period from nanometers to micrometers in a D2d Heusler compound. Adv. Mater. 32, 2002043 (2020).

    Article  CAS  Google Scholar 

  30. Ishizuka, K. & Allman, B. Phase measurement of atomic resolution image using transport of intensity equation. J. Electron Microsc. 54, 191–197 (2005).

    CAS  Google Scholar 

  31. Peng, L. et al. Controlled transformation of skyrmions and antiskyrmions in a non-centrosymmetric magnet. Nat. Nanotechnol. 15, 181–186 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Hirsch, P., Horne, R. & Whelan, M. Direct observations of the arrangement and motion of dislocations in aluminium. Philos. Mag. 1, 677–684 (1956).

    Article  CAS  Google Scholar 

  33. Anderson, P. M., Hirth, J. P. & Lothe, J. Theory of Dislocations (Cambridge Univ. Press, 2017).

  34. Schoenherr, P. et al. Topological domain walls in helimagnets. Nat. Phys. 14, 465–468 (2018).

    Article  CAS  Google Scholar 

  35. Chuang, I., Durrer, R., Turok, N. & Yurke, B. Cosmology in the laboratory: defect dynamics in liquid crystals. Science 251, 1336–1342 (1991).

    Article  CAS  PubMed  Google Scholar 

  36. Zapotocky, M., Ramos, L., Poulin, P., Lubensky, T. & Weitz, D. Particle-stabilized defect gel in cholesteric liquid crystals. Science 283, 209–212 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Brazovskii, S. & Nattermann, T. Pinning and sliding of driven elastic systems: from domain walls to charge density waves. Adv. Phys. 53, 177–252 (2004).

    Article  CAS  Google Scholar 

  38. Tang, J. et al. Magnetic skyrmion bundles and their current-driven dynamics. Nat. Nanotechnol. 16, 1086–1091 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, W. et al. Electrical manipulation of skyrmions in a chiral magnet. Nat. Commun. 13, 1593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng, L. et al. Dynamic transition of current-driven single-skyrmion motion in a room-temperature chiral-lattice magnet. Nat. Commun. 12, 6797 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu, G. et al. Room-temperature skyrmion shift device for memory application. Nano Lett. 17, 261–268 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Nabarro, F. Fifty-year study of the Peierls–Nabarro stress. Mater. Sci. Eng. A 234, 67–76 (1997).

    Article  Google Scholar 

  43. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Article  CAS  Google Scholar 

  44. Ezawa, M. Compact merons and skyrmions in thin chiral magnetic films. Phys. Rev. B 83, 104416 (2011).

    Article  Google Scholar 

  45. Lin, S.-Z., Saxena, A. & Batista, C. D. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy. Phys. Rev. B 91, 224407 (2015).

    Article  Google Scholar 

  46. Yu, X. et al. Transformation between meron and skyrmion topological spin textures in a chiral magnet. Nature 564, 95–98 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Jani, H. et al. Antiferromagnetic half-skyrmions and bimerons at room temperature. Nature 590, 74–79 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Iwasaki, J., Mochizuki, M. & Nagaosa, N. Universal current-velocity relation of skyrmion motion in chiral magnets. Nat. Commun. 4, 1463 (2013).

    Article  PubMed  Google Scholar 

  50. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  51. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Z. Zhong for helpful discussion. This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB33030100 to Y.Z.), the Science Centre of the National Science Foundation of China (grant no. 52088101 to Y.Z. and B.S.), the National Natural Science Foundation of China (nos. 52271195 to Y.Z., 52130103 to Y.Z. and S.W., 51925605 to J.S. and 52225106 to C.S.) and the CAS Project for Young Scientists in Basic Research (no. YSBR-084 to Y.Z.). The work at Los Alamos National Lab was carried out under the auspices of the US Department of Energy (DOE) NNSA under contract no. 89233218CNA000001 to S.-Z.L. through the LDRD Program, and was performed, in part, at the Center for Integrated Nanotechnologies, an Office of the Science User Facility, operated for the US DOE Office of Science, under user proposal nos. 2018BU0010 and 2018BU0083 to S.-Z.L.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and B.S. supervised the project. Z.H., Z.C. and Z.W. synthesized the Mn1.4PtSn bulk crystals. Z.H. and Y.Z. performed the L-TEM observation. Z.H., Z.L. and S.-Z.L. performed the micromagnetic simulation. Z.H., S.-Z.L., J.C. and Y.Z. analysed the experimental data and plotted the figures. Z.H., S.-Z.L. and Y.Z. wrote the manuscript after discussing the data with J.S., S.W., C.S., T.Z., J.C. and B.S.

Corresponding authors

Correspondence to Shi-Zeng Lin or Ying Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes I–III and Figs. 1–14.

Supplementary Video 1

Antiskyrmion sliding along the straight stripe domain at a current density of je = 4.3 × 109 A m–2 at zero field and room temperature.

Supplementary Video 2

Direction reversal of antiskyrmion movement when the pulse current (je = 4.3 × 109 A m–2) is reversed to the opposite direction.

Supplementary Video 3

Current-driven behaviour of a meron pair along a helical stripe at a current density of je = 6.8 × 109 A m–2 at zero field and room temperature.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Z., Li, Z., Chen, Z. et al. Experimental observation of current-driven antiskyrmion sliding in stripe domains. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01870-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing