Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals

Abstract

Robust ferroelectricity in nanoscale fluorite oxide-based thin films enables promising applications in silicon-compatible non-volatile memories and logic devices. However, the polar orthorhombic (O) phase of fluorite oxides is a metastable phase that is prone to transforming into the ground-state non-polar monoclinic (M) phase, leading to macroscopic ferroelectric degradation. Here we investigate the reversibility of the O–M phase transition in ZrO2 nanocrystals via in situ visualization of the martensitic transformation at the atomic scale. We reveal that the reversible shear deformation pathway from the O phase to the monoclinic-like (M′) state, a compressive-strained M phase, is protected by 90° ferroelectric–ferroelastic switching. Nevertheless, as the M′ state gradually accumulates localized strain, a critical tensile strain can pin the ferroelastic domain, resulting in an irreversible M′–M strain relaxation and the loss of ferroelectricity. These findings demonstrate the key role of ferroelastic switching in the reversibility of phase transition and also provide a tensile-strain threshold for stabilizing the metastable ferroelectric phase in fluorite oxide thin films.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reversible 90° ferroelectric–ferroelastic switching and O–M′ martensitic transformation in ZrO2.
Fig. 2: The in-plane strain distributions in shear deformation.
Fig. 3: Multilayer accumulated strain-induced irreversible Mʹ–M transformation.
Fig. 4: Strain comparison between reversible O–M′ and irreversible M′–M martensitic transformations.
Fig. 5: The influence of strain on the O–M martensitic transformation and ferroelastic switching according to first-principles calculations.

Similar content being viewed by others

Data availability

The data generated in figures and calculated structures from this study are available via Figshare at https://doi.org/10.6084/m9.figshare.25286494 (ref. 54). All data in this article are available from the corresponding authors upon request. Source data are provided with this paper.

Code availability

The computer code used for data analysis is available from the corresponding author upon request.

References

  1. Kniazeva, M. A. et al. Ferroelectric to incommensurate fluctuations crossover in PbHfO3–PbSnO3. Phys. Rev. B 105, 014101 (2022).

    Article  CAS  Google Scholar 

  2. Schroeder, U., Park, M. H., Mikolajick, T. & Hwang, C. S. The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022).

    Article  Google Scholar 

  3. Chen, H. et al. HfO2-based ferroelectrics: from enhancing performance, material design, to applications. Appl. Phys. Rev. 9, 011307 (2022).

    Article  CAS  Google Scholar 

  4. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  5. Cheema, SurajS. et al. Emergent ferroelectricity in subnanometer binary oxide films on silicon. Science 376, 648–652 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Cheema, S. S. et al. Enhanced ferroelectricity in ultrathin films grown directly on silicon. Nature 580, 478–482 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Müller, J. et al. Ferroelectric Zr0.5Hf0.5O2 thin films for nonvolatile memory applications. Appl. Phys. Lett. 99, 112901 (2011).

    Article  Google Scholar 

  8. Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Reyes-Lillo, S. E., Garrity, K. F. & Rabe, K. M. Antiferroelectricity in thin-film ZrO2 from first principles. Phys. Rev. B 90, 140103 (2014).

    Article  Google Scholar 

  10. Rushchanskii, K. Z., Blügel, S. & Ležaić, M. Ordering of oxygen vacancies and related ferroelectric properties in HfO2−δ. Phys. Rev. Lett. 127, 087602 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, Z. et al. Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants. IEEE Electron Device Lett. 43, 553–556 (2022).

    Article  CAS  Google Scholar 

  12. Song, T. et al. Positive effect of parasitic monoclinic phase of Hf0.5Zr0.5O2 on ferroelectric endurance. Adv. Electron. Mater. 8, 2100420 (2022).

    Article  CAS  Google Scholar 

  13. He, R., Wu, H., Liu, S., Liu, H. & Zhong, Z. Ferroelectric structural transition in hafnium oxide induced by charged oxygen vacancies. Phys. Rev. B 104, L180102 (2021).

    Article  CAS  Google Scholar 

  14. Qi, Y. & Rabe, K. M. Phase competition in HfO2 with applied electric field from first principles. Phys. Rev. B 102, 214108 (2020).

    Article  CAS  Google Scholar 

  15. Zhu, T., Deng, S. & Liu, S. Epitaxial ferroelectric hafnia stabilized by symmetry constraints. Phys. Rev. B 108, L060102 (2023).

    Article  CAS  Google Scholar 

  16. Yun, Y. et al. Intrinsic ferroelectricity in Y-doped HfO2 thin films. Nat. Mater. 21, 903–909 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Pešić, M. et al. Physical mechanisms behind the field-cycling behavior of HfO2-based ferroelectric capacitors. Adv. Funct. Mater. 26, 4601–4612 (2016).

    Article  Google Scholar 

  18. Grimley, E. D. et al. Structural changes underlying field-cycling phenomena in ferroelectric HfO2 thin films. Adv. Electron. Mater. 2, 1600173 (2016).

    Article  Google Scholar 

  19. Grimley, E. D., Schenk, T., Mikolajick, T., Schroeder, U. & LeBeau, J. M. Atomic structure of domain and interphase boundaries in ferroelectric HfO2. Adv. Mater. Interfaces 5, 1701258 (2018).

    Article  Google Scholar 

  20. Liu, S. & Hanrahan, B. M. Effects of growth orientations and epitaxial strains on phase stability of HfO2 thin films. Phys. Rev. Mater. 3, 054404 (2019).

    Article  CAS  Google Scholar 

  21. Fan, P. et al. Origin of the intrinsic ferroelectricity of HfO2 from ab initio molecular dynamics. J. Phys. Chem. C 123, 21743–21750 (2019).

    Article  CAS  Google Scholar 

  22. Agar, J. C. et al. Highly mobile ferroelastic domain walls in compositionally graded ferroelectric thin films. Nat. Mater. 15, 549–556 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Karthik, J., Damodaran, A. R. & Martin, L. W. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 108, 167601 (2012).

    Article  CAS  PubMed  Google Scholar 

  24. Gronenberg, O. et al. The impact of rapid thermal annealing for the ferroelectricity of undoped sputtered HfO2 and its wake-up effect. J. Appl. Phys. 132, 094101 (2022).

    Article  CAS  Google Scholar 

  25. Shimizu, T. et al. Ferroelectricity mediated by ferroelastic domain switching in HfO2-based epitaxial thin films. Appl. Phys. Lett. 113, 212901 (2018).

    Article  Google Scholar 

  26. Zhou, P. et al. Intrinsic 90° charged domain wall and its effects on ferroelectric properties. Acta Mater. 232, 117920 (2022).

    Article  CAS  Google Scholar 

  27. Song, M. S., Lee, K. C., Choi, J. C., Lee, K. & Chae, S. C. Local field inhomogeneity and ferroelectric switching dynamics in Hf1−xZrxO2 thin films. Phys. Rev. Mater. 5, 114408 (2021).

    Article  CAS  Google Scholar 

  28. Nukala, P. et al. Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices. Science 372, 630–635 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. El Boutaybi, A., Maroutian, T., Largeau, L., Matzen, S. & Lecoeur, P. Stabilization of the epitaxial rhombohedral ferroelectric phase in ZrO2 by surface energy. Phys. Rev. Mater. 6, 074406 (2022).

    Article  CAS  Google Scholar 

  30. Xu, X. et al. Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y. Nat. Mater. 20, 826–832 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Ding, W., Zhang, Y., Tao, L., Yang, Q. & Zhou, Y. The atomic-scale domain wall structure and motion in HfO2-based ferroelectrics: a first-principle study. Acta Mater. 196, 556–564 (2020).

    Article  CAS  Google Scholar 

  32. Li, X. et al. Polarization switching and correlated phase transitions in fluorite-structure ZrO2 nanocrystals. Adv. Mater. 35, 2207736 (2023).

    Article  CAS  Google Scholar 

  33. Zhong, H. et al. Large-scale Hf0.5Zr0.5O2 membranes with robust ferroelectricity. Adv. Mater. 34, 2109889 (2022).

    Article  CAS  Google Scholar 

  34. Egerton, R. Radiation damage and nanofabrication in TEM and STEM. Microsc. Today 29, 56–59 (2021).

    Article  CAS  Google Scholar 

  35. Jiang, N. Electron beam damage in oxides: a review. Rep. Prog. Phys. 79, 016501 (2015).

    Article  PubMed  Google Scholar 

  36. Egerton, R. F., Li, P. & Malac, M. Radiation damage in the TEM and SEM. Micron 35, 399–409 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Wei, J., Feng, B., Tochigi, E., Shibata, N. & Ikuhara, Y. Direct imaging of the disconnection climb mediated point defects absorption by a grain boundary. Nat. Commun. 13, 1455 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wei, J. et al. Direct imaging of atomistic grain boundary migration. Nat. Mater. 20, 951–955 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Guan, S.-H., Zhang, X.-J. & Liu, Z.-P. Energy landscape of zirconia phase transitions. J. Am. Chem. Soc. 137, 8010–8013 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Peng, H.-K., Liu, C.-M., Kao, Y.-C., Wu, P.-J. & Wu, Y.-H. Improved immunity to sub-cycling induced instability for triple-level cell ferroelectric FET memory by depositing HfZrOx on NH3 plasma-treated Si. IEEE Electron Device Lett. 43, 1219–1222 (2022).

    Article  CAS  Google Scholar 

  41. Jiang, P. et al. Stabilizing remanent polarization during cycling in HZO-based ferroelectric device by prolonging wake-up period. Adv. Electron. Mater. 0, 2100662 (2021).

    Google Scholar 

  42. Li, S. et al. Involvement of unsaturated switching in the endurance cycling of Si-doped HfO2 ferroelectric thin films. Adv. Electron. Mater. 6, 2000264 (2020).

    Article  CAS  Google Scholar 

  43. Zhou, S., Zhang, J. & Rappe, A. M. Strain-induced antipolar phase in hafnia stabilizes robust thin-film ferroelectricity. Sci. Adv. 8, eadd5953 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kelley, K. P. et al. Ferroelectricity in hafnia controlled via surface electrochemical state. Nat. Mater. 22, 1144–1151 (2023).

    Article  CAS  PubMed  Google Scholar 

  45. Depner, S. W., Cultrara, N. D., Farley, K. E., Qin, Y. & Banerjee, S. Ferroelastic domain organization and precursor control of size in solution-grown hafnium dioxide nanorods. ACS Nano 8, 4678–4688 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Gatan. DigitalMicrograph Software www.gatan.com/products/tem-analysis/digitalmicrograph-software (2024).

  47. Zhang, Q., Zhang, L. Y., Jin, C. H., Wang, Y. M. & Lin, F. CalAtom: a software for quantitatively analysing atomic columns in a transmission electron microscope image. Ultramicroscopy 202, 114–120 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  49. Shi, S. et al. Multi-scale computation methods: their applications in lithium-ion battery research and development. Chin. Phys. B 25, 018212 (2016).

    Article  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 78, 1396–1396 (1997).

    Article  CAS  Google Scholar 

  52. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  53. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  54. Li, X. et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Figshare https://doi.org/10.6084/m9.figshare.25286494 (2024).

Download references

Acknowledgements

We are grateful for funding support from the National Natural Science Foundation of China (52322212, 52250402, 52025025, 52072400, 51991344, 12074416 and 12222414), the National Key R&D Program of China (no. 2019YFA0308500) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (no. Y2022003).

Author information

Authors and Affiliations

Authors

Contributions

L.G., C.G. and Q.Z. conceived the idea of the work. X.L. and Q.Z. designed the research. Z.L. and H.Z. fabricated the thin films. A.G. and X.L. performed the theoretical calculations and interpreted the calculation results. X.L., Q.Z., T.L., F.M. and S.W. performed and analysed the in situ STEM experiments. X.L. and Q.Z. prepared the manuscript with contributions from the other authors. All authors contributed to the discussion and provided feedback on the manuscript. L.G., C.G., Q.Z., D.S. and K.J. guided the project.

Corresponding authors

Correspondence to Qinghua Zhang, Chen Ge or Lin Gu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ignasi Fina and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Plan-view imaging and transfer methods of ZrO2 thin film.

(a) Schematic of plan-view imaging. Different areas with different colors represent [111] or [010] crystal orientations of ZrO2 grains in the film. In this work, we focus on the imaging of O-[010] grains to visualize the 90° switching and the transition between O and M phases. (b) Transfer method of ZrO2 thin films: PLD growth of ZrO2/LSMO/STO; LSMO layer is etched by acid solution; ZrO2 film is released and transferred to TEM Cu grid for plan-view imaging.

Extended Data Fig. 2 Lattice parameter analysis of Fig. 1c, d.

(a, b) Lattice plane spacing mapping of Fig. 1c along the x-axis (a) and y-axis (b). The vertical stripes in (a) indicate the vertical polarization direction of O-phase ZrO2. (c, d) Lattice plane spacing mapping of Fig. 1d along the x-axis (c) and y-axis (d). The horizontal stripes in (d) indicate the horizontal polarization direction.

Extended Data Fig. 3 Inversed ABF-STEM images of M phase (a) and monolayer shear deformation (b) within O phase.

Scale bars: 1 nm.

Extended Data Fig. 4 (a) ABF-STEM images of ZrO2 nanocrystal. (b,c) Multilayer (b) and monolayer shear deformation (c) within O phase in Fig. 1e.

Scale bars: 5 nm in (a) and 1 nm in (b,c).

Extended Data Fig. 5 The HAADF-STEM image of ZrO2 (a) and 90° domain wall structure (b) of white rectangular region in Fig. 3d.

The M phase is marked by red dots and the yellow dashed lines represent the 90° domain walls. Scale bars: 5 nm in (a) and 1 nm in (b).

Extended Data Fig. 6 The averaged in-plane strain of the Zr layers in Fig. 4a, b.

Error bars represent the standard deviations of in-plane strain from neighboring Zr atoms in each layer (~100 atoms per layer) and the data are presented as mean values of in-plane strain ± standard deviation.

Source data

Extended Data Fig. 7 The observed coexistence of [001] and [010] ferroelectric-ferroelastic domains in another nanocrystal.

The light blue dashed region denotes a [001] domain with out-of-plane polarization direction. Two ferroelastic domain walls are cb/bc and ab/ac, corresponding to Type 5 and Type 9 boundaries as defined in reference31. It is worth noting that the axis in this figure differs from the reference because of the distinct space group definitions. Scale bar: 5 nm.

Extended Data Fig. 8 (a,b) Two cases of polarization order evolution during 90° switching.

The polarization direction in each polar layer can be reorganized after ferroelastic switching. The polarization direction is indicated by the shifting of polarized oxygen ions. The orange and cyan arrows represent two reversed polarization states along the in-plane direction. Scale bars: 3 nm.

Supplementary information

Supplementary Information

Supplementary Note, Tables S1 and S2, Caption to Video 1 and refs. 1–17.

Supplementary Video 1

Movie sequentially showing the step-by-step HAADF-STEM images of the ZrO2 nanocrystal at the speed of 1 s per frame.

Source data

Source Data Fig. 2

In-plane strain data plotted in Fig. 2c–e.

Source Data Fig. 5

Calculated total energy data plotted in Fig. 5a, energy barrier data plotted in Fig. 5b and interface energy plotted in Fig. 5e.

Source Data Extended Data Fig. 6

Mean in-plane strain data and standard deviations plotted in Extended Data Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, Z., Gao, A. et al. Ferroelastically protected reversible orthorhombic to monoclinic-like phase transition in ZrO2 nanocrystals. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01853-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01853-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing