Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-induced electronic polarization in antiferromagnetic Cr2O3

Abstract

In a solid, the electronic subsystem can exhibit incipient order with lower point group symmetry than the crystal lattice. Ultrafast external fields that couple exclusively to electronic order parameters have rarely been investigated, however, despite their potential importance in inducing exotic effects. Here we show that when inversion symmetry is broken by the antiferromagnetic order in Cr2O3, transmitting a linearly polarized light pulse through the crystal gives rise to an in-plane rotational symmetry-breaking (from C3 to C1) via optical rectification. Using interferometric time-resolved second harmonic generation, we show that the ultrafast timescale of the symmetry reduction is indicative of a purely electronic response; the underlying spin and crystal structures remain unaffected. The symmetry-broken state exhibits a dipole moment, and its polar axis can be controlled with the incident light. Our results establish a coherent nonlinear optical protocol by which to break electronic symmetries and produce unconventional electronic effects in solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Equilibrium SHG of Cr2O3.
Fig. 2: Symmetry reduction in the two AFM domain states.
Fig. 3: Manipulation of light-induced electronic polarization.
Fig. 4: Floquet theory of the light-induced electronic polarization.

Similar content being viewed by others

Data availability

The data that support the findings of this study are present in the paper and/or in the Supplementary Information and are deposited in the Zenodo repository at https://doi.org/10.5281/zenodo.10674665 (ref. 41). Additional data related to the paper are available from the corresponding author upon request.

References

  1. Powell, R. Symmetry, Group Theory, and the Physical Properties of Crystals (Springer, 2010).

  2. Kivelson, S. A., Fradkin, E. & Emery, V. Electronic liquid-crystal phases of a doped Mott insulator. Nature 393, 550–553 (1998).

    Article  CAS  Google Scholar 

  3. Lilly, M. P. et al. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).

    Article  CAS  Google Scholar 

  4. Feldman, B. E. et al. Observation of a nematic quantum Hall liquid on the surface of bismuth. Science 354, 316–321 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Borzi, R. et al. Formation of a nematic fluid at high fields in Sr3Ru2O7 at high magnetic fields. Science 315, 214–217 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Harter, J. et al. A parity-breaking electronic nematic phase transition in the spin-orbit coupled metal Cd2Re2O7. Science 356, 295–299 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, J. et al. Spontaneous breaking of rotational symmetry in copper oxide superconductors. Nature 547, 432–435 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Chu, J. et al. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. Wu, J. et al. Electronic nematicity in Sr2RuO4. Proc. Natl Acad. Sci. USA 117, 10654–10659 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ronning, F. et al. Electronic in-plane symmetry breaking at field-tuned quantum criticality in CeRhIn5. Nature 548, 313–317 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Okazaki, R. et al. Rotational symmetry breaking in the hidden-order phase of URu2Si2. Science 331, 439–442 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    Article  CAS  PubMed  Google Scholar 

  13. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401–197405 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Shirley, J. Solution of the Schrodinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–987 (1965).

    Article  Google Scholar 

  15. Oka, T. & Kitamura, S. Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

    Article  Google Scholar 

  16. Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kimel, A. et al. Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435, 655–657 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Satoh, T. et al. Spin oscillations in antiferromagnetic NiO triggered by circularly polarized light. Phys. Rev. Lett. 105, 077402 (2010).

    Article  PubMed  Google Scholar 

  19. Tzschaschel, C. et al. Ultrafast optical excitation of coherent magnons in antiferromagnetic NiO. Phys. Rev. B 95, 174407 (2017).

    Article  Google Scholar 

  20. Pershan, P. S., van der Ziel, J. P. & Malmstrom, L. D. Theoretical discussion of the inverse Faraday effect, Raman scattering, and related phenomena. Phys. Rev. 143, 574–583 (1966).

    Article  CAS  Google Scholar 

  21. Shan, J. et al. Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

    Article  CAS  PubMed  Google Scholar 

  22. Sie, E. et al. Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. Sie, E. et al. Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Wang, Y. et al. Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Mahmood, F. et al. Selective scattering between Floquet–Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

    Article  CAS  Google Scholar 

  26. McIver, J. W. et al. Light-induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Boyd, R. Nonlinear Optics (Academic Press, 2020).

  28. Bass, M. et al. Optical rectification. Phys. Rev. Lett. 9, 446–448 (1962).

    Article  CAS  Google Scholar 

  29. Kaplan, D., Holder, T. & Yan, B. Nonvanishing subgap photocurrent as a probe of lifetime effects. Phys. Rev. Lett. 125, 227401 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Fiebig, M., Pavlov, V. & Pisarev, R. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  CAS  Google Scholar 

  31. Fiebig, M. et al. Second harmonic generation and magnetic-dipole-electric-dipole interference in antiferromagnetic Cr2O3. Phys. Rev. Lett. 73, 2127–2130 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Fiebig, M., Fröhlich, D., Sluyterman, G. & Pisarev, R. V. Domain topography of antiferromagnetic Cr2O3 by second harmonic generation. Appl. Phys. Lett. 66, 2906–2909 (1995).

    Article  CAS  Google Scholar 

  33. Satoh, T. et al. Ultrafast spin and lattice dynamics in antiferromagnetic Cr2O3. Phys. Rev. B 75, 155406 (2007).

    Article  Google Scholar 

  34. Satoh, T. et al. Time-resolved demagnetization in Cr2O3 by phase sensitive second harmonic generation. Phys. Rev. B 310, 1604–1606 (2007).

    CAS  Google Scholar 

  35. Sala, V. et al. Resonant optical control of the structural distortions that drive ultrafast demagnetization in Cr2O3. Phys. Rev. B 94, 014430 (2015).

    Article  Google Scholar 

  36. Birss, R. Symmetry and Magnetism (North Holland, 1966).

  37. Muthukumar, V., Valentí, R. & Gros, C. Microscopic model of nonreciprocal optical effects in Cr2O3. Phys. Rev. Lett. 75, 2766–2769 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Muto, M. et al. Magnetoelectric and second-harmonic spectra in antiferromagnetic Cr2O3. Phys. Rev. B 57, 9586–9607 (1998).

    Article  CAS  Google Scholar 

  39. Muthukumar, V., Valentí, R. & Gros, C. Theory of nonreciprocal optical effects in antiferromagnets: the case of Cr2O3. Phys. Rev. B 54, 433–440 (1996).

    Article  CAS  Google Scholar 

  40. Tanabe, Y., Fiebig, M. & Hanamura, E. in Magneto-optics (eds Sugano, S. & Kojima, N.) 107–136 (Springer, 1999).

  41. Xinshu, Z. Light-induced electronic polarization in antiferromagnetic Cr2O3. Zenodo https://doi.org/10.5281/zenodo.10674665 (2024).

Download references

Acknowledgements

We thank M. Ye, D. Kaplan, H. Ning, C. Belvin and W. Campbell for helpful conversations related to this work. Research at the University of California Los Angeles (UCLA) was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0023017 (A.K.). The work at Rutgers was supported by the W. M. Keck Foundation (S.-W.C.). A.B.C. and R.R. acknowledge financial support from the University of California Laboratory Fees Research Program funded by the University of California Office of the President (grant number LFR-20-653926). A.B.C. acknowledges financial support from the Joseph P. Rudnick Prize Postdoctoral Fellowship (UCLA).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. and T.C. built the SHG set-up and performed the time-resolved SHG experiments under the supervision of A.K.; X.Z. analysed the data under the supervision of A.K.; K.D. and K.W. grew the single crystals under the supervision of S.-W.C. Theoretical calculations were carried out by A.B.C. with input from R.R., X.Z. and A.K. The paper was written by X.Z., A.B.C. and A.K. with input from all authors.

Corresponding author

Correspondence to Anshul Kogar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Manfred Fiebig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Carbin, T., Culver, A.B. et al. Light-induced electronic polarization in antiferromagnetic Cr2O3. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01852-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01852-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing