Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Prediction of DNA origami shape using graph neural network

Abstract

Unlike proteins, which have a wealth of validated structural data, experimentally or computationally validated DNA origami datasets are limited. Here we present a graph neural network that can predict the three-dimensional conformation of DNA origami assemblies both rapidly and accurately. We develop a hybrid data-driven and physics-informed approach for model training, designed to minimize not only the data-driven loss but also the physics-informed loss. By employing an ensemble strategy, the model can successfully infer the shape of monomeric DNA origami structures almost in real time. Further refinement of the model in an unsupervised manner enables the analysis of supramolecular assemblies consisting of tens to hundreds of DNA blocks. The proposed model enables an automated inverse design of DNA origami structures for given target shapes. Our approach facilitates the real-time virtual prototyping of DNA origami, broadening its design space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DGNN.
Fig. 2: Hybrid data-driven and physics-informed training algorithm.
Fig. 3: Ensemble model.
Fig. 4: Analysis of supramolecular assemblies.
Fig. 5: Design optimization.
Fig. 6: Experimental validation of optimized spiral and helical structures.

Similar content being viewed by others

Data availability

All data are included in the Article and its Supplementary Information. Source data are provided with this paper.

Code availability

The proposed framework is provided through Deep SNUPI53, which is available via GitHub at https://github.com/SSDL-SNU/DeepSNUPI.

References

  1. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fang, X. et al. Geometry-enhanced molecular representation learning for property prediction. Nat. Mach. Intell. 4, 127–134 (2022).

  4. Wang, S., Sun, S., Li, Z., Zhang, R. & Xu, J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLoS Comput. Biol. 13, e1005324 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  5. Kulmanov, M., Khan, M. A., Hoehndorf, R. & Wren, J. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier. Bioinformatics 34, 660–668 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Jimenez, J., Doerr, S., Martinez-Rosell, G., Rose, A. S. & De Fabritiis, G. DeepSite: protein-binding site predictor using 3D-convolutional neural networks. Bioinformatics 33, 3036–3042 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. Adv. Neural Inf. Process. Syst. 28, 2224–2232 (2015).

  8. Townshend, R. J. L. et al. Geometric deep learning of RNA structure. Science 373, 1047–1051 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dietz, H., Douglas, S. M. & Shih, W. M. Folding DNA into twisted and curved nanoscale shapes. Science 325, 725–730 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Benson, E. et al. DNA rendering of polyhedral meshes at the nanoscale. Nature 523, 441–444 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pumm, A. K. et al. A DNA origami rotary ratchet motor. Nature 607, 492–498 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hong, F., Zhang, F., Liu, Y. & Yan, H. DNA origami: scaffolds for creating higher order structures. Chem. Rev. 117, 12584–12640 (2017).

    Article  CAS  PubMed  Google Scholar 

  15. Wamhoff, E. C. et al. Programming structured DNA assemblies to probe biophysical processes. Annu. Rev. Biophys. 48, 395–419 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, M. et al. Harnessing a paper-folding mechanism for reconfigurable DNA origami. Nature 619, 78–86 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Bruna, J., Zaremba, W., Szlam, A. & LeCun, Y. Spectral networks and locally connected networks on graphs. In 2nd International Conference on Learning Representations (ICLR, 2014).

  18. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional networks. In 5th International Conference on Learning Representations (ICLR, 2017).

  19. Xu, K., Hu, W., Leskovec, J. & Jegelka, S. How powerful are graph neural networks? In 7th International Conference on Learning Representations (ICLR, 2019).

  20. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  21. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  22. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Douglas, S. M. et al. Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res. 37, 5001–5006 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee, J. Y. et al. Rapid computational analysis of DNA origami assemblies at near-atomic resolution. ACS Nano 15, 1002–1015 (2021).

    Article  CAS  PubMed  Google Scholar 

  25. Lee, J. Y., Kim, M., Lee, C. & Kim, D. N. Characterizing and harnessing the mechanical properties of short single-stranded DNA in structured assemblies. ACS Nano 15, 20430–20441 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Lee, J. G., Kim, K. S., Lee, J. Y. & Kim, D. N. Predicting the free-form shape of structured DNA assemblies from their lattice-based design blueprint. ACS Nano 16, 4289–4297 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. Kube, M. et al. Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. Nat. Commun. 11, 6229 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rovigatti, L. et al. A simple solution to the problem of self-assembling cubic diamond crystals. Nanoscale 14, 14268–14275 (2022).

    Article  CAS  PubMed  Google Scholar 

  29. Poppleton, E. et al. Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Res. 48, e72 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proc. 34th International Conference on Machine Learning 70, 1126–1135 (2017).

  31. Ke, Y. et al. Multilayer DNA origami packed on a square lattice. J. Am. Chem. Soc. 131, 15903–15908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Langecker, M. et al. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338, 932–936 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kim, D. N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Res. 40, 2862–2868 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Bai, X. C., Martin, T. G., Scheres, S. H. & Dietz, H. Cryo-EM structure of a 3D DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012–20017 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yoo, J. & Aksimentiev, A. In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc. Natl Acad. Sci. USA 110, 20099–20104 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. List, J., Falgenhauer, E., Kopperger, E., Pardatscher, G. & Simmel, F. C. Long-range movement of large mechanically interlocked DNA nanostructures. Nat. Commun. 7, 12414 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Krishnan, S. et al. Molecular transport through large-diameter DNA nanopores. Nat. Commun. 7, 12787 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jungmann, R. et al. Quantitative super-resolution imaging with qPAINT. Nat. Methods 13, 439–442 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nickels, P. C. et al. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 354, 305–307 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, C., Lee, J. Y. & Kim, D. N. Polymorphic design of DNA origami structures through mechanical control of modular components. Nat. Commun. 8, 2067 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Lee, J. Y. et al. Investigating the sequence-dependent mechanical properties of DNA nicks for applications in twisted DNA nanostructure design. Nucleic Acids Res. 47, 93–102 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Lee, C., Kim, K. S., Kim, Y. J., Lee, J. Y. & Kim, D. N. Tailoring the mechanical stiffness of DNA nanostructures using engineered defects. ACS Nano 13, 8329–8336 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Grome, M. W., Zhang, Z. & Lin, C. Stiffness and membrane anchor density modulate DNA-nanospring-induced vesicle tubulation. ACS Appl. Mater. Interfaces 11, 22987–22992 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, Y. J., Lee, C., Lee, J. G. & Kim, D. N. Configurational design of mechanical perturbation for fine control of twisted DNA origami structures. ACS Nano 13, 6348–6355 (2019).

    Article  CAS  PubMed  Google Scholar 

  48. Jun, H. et al. Automated sequence design of 3D polyhedral wireframe DNA origami with honeycomb edges. ACS Nano 13, 2083–2093 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Jun, H. et al. Autonomously designed free-form 2D DNA origami. Sci. Adv. 5, eaav0655 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki, Y., Kawamata, I., Mizuno, K. & Murata, S. Large deformation of a DNA-origami nanoarm induced by the cumulative actuation of tension-adjustable modules. Angew. Chem. Int. Ed. 59, 6230–6234 (2020).

    Article  CAS  Google Scholar 

  51. Gopinath, A. et al. Absolute and arbitrary orientation of single-molecule shapes. Science 371, eabd6179 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In 7th International Conference on Learning Representations (ICLR, 2019).

  53. Truong-Quoc, C., Lee, J. Y., Kim, K. S. & Kim, D. N. Deep SNUPI. Zenodo https://doi.org/10.5281/zenodo.10627773 (2024).

Download references

Acknowledgements

This research was supported by the National Convergence Research of Scientific Challenges through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (MSIT) of the Korean government (NRF-2020M3F7A1094299), the Bio & Medical Technology Development Program of the NRF funded by the Korean government (MSIT) (NRF-2022M3E5F1018465) and the National Supercomputing Center with supercomputing resources including technical support (KSC-2021-CHA-0025). Financial support was also provided by the Youlchon Foundation (Nongshim Corporation and affiliated companies) in Korea. J.Y.L. acknowledges support from the National Research Foundation of Korea (NRF) funded by the Korean government (MSIT) (NRF-2021R1C1C2003554).

Author information

Authors and Affiliations

Authors

Contributions

J.Y.L., C.T.-Q. and D.-N.K. designed the study. C.T.-Q. and J.Y.L. developed the approach. C.T.-Q. and J.Y.L. analysed the data. K.S.K. performed the experiments and processed the results. J.Y.L., C.T.-Q., K.S.K. and D.-N.K. wrote and revised the manuscript.

Corresponding author

Correspondence to Do-Nyun Kim.

Ethics declarations

Competing interests

D.-N.K., J.Y.L. and C.T.-Q. are co-inventors on a patent application related to this work filed by Seoul National University R&DB Foundation (no. KR10-2023-0064976 filed on 19 May 2023), Korea.

Peer review

Peer review information

Nature Materials thanks Hendrik Dietz and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–9 and Tables 1–17.

Reporting Summary

Supplementary Data 1

Statistical source data for Supplementary Figs. 2 and 4.

Source data

Source Data Fig. 2

Statistical source data for Fig. 2.

Source Data Fig. 3

Statistical source data for Fig. 3.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Source Data Fig. 6

Statistical source data for Fig. 6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Truong-Quoc, C., Lee, J.Y., Kim, K.S. et al. Prediction of DNA origami shape using graph neural network. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01846-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01846-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing