Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers

Abstract

Coupling of spin and charge currents to structural chirality in non-magnetic materials, known as chirality-induced spin selectivity, is promising for application in spintronic devices at room temperature. Although the chirality-induced spin selectivity effect has been identified in various chiral materials, its Onsager reciprocal process, the inverse chirality-induced spin selectivity effect, remains unexplored. Here we report the observation of the inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Using spin-pumping techniques, the inverse chirality-induced spin selectivity effect enables quantification of the magnitude of the longitudinal spin-to-charge conversion driven by chirality-induced spin selectivity in different chiral polymers. By widely tuning conductivities and supramolecular chiral structures via a printing method, we found a very long spin relaxation time of up to several nanoseconds parallel to the chiral axis. Our demonstration of the inverse chirality-induced spin selectivity effect suggests possibilities for elucidating the puzzling interplay between spin and chirality, and opens a route for spintronic applications using printable chiral assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustrations of CISS, ICISS and chirality formation in π-conjugated PII2T polymers.
Fig. 2: ISHE and ICISS effects in chiral polymers.
Fig. 3: Hanle effect under oblique magnetic field.
Fig. 4: Interplays of StC conversion coefficient, carrier mobility and spin relaxation time in chiral PII2T polymers.

Similar content being viewed by others

Data availability

All data in the main text or the Supplementary Information is available upon reasonable request. Source data are provided with this paper.

References

  1. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Hirohata, A. et al. Review on spintronics: principles and device applications. J. Magn. Magn. Mater. 509, 166711 (2020).

    Article  CAS  Google Scholar 

  4. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Observation of the spin Hall effect in semiconductors. Science 306, 1910–1913 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 2199473 (2006).

    Article  Google Scholar 

  7. Mosendz, O. et al. Detection and quantification of inverse spin Hall effect from spin pumping in permalloy/normal metal bilayers. Phys. Rev. B 82, 214403 (2010).

    Article  ADS  Google Scholar 

  8. Sun, D. et al. Inverse spin Hall effect from pulsed spin current in organic semiconductors with tunable spin–orbit coupling. Nat. Mater. 15, 863–869 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Hoffmann, A. Spin Hall effects in metals. IEEE Trans. Magn. 49, 5172–5193 (2013).

    Article  ADS  CAS  Google Scholar 

  11. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  ADS  Google Scholar 

  12. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020).

    Article  CAS  Google Scholar 

  14. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    Article  CAS  Google Scholar 

  18. Göhler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894–897 (2011).

    Article  ADS  PubMed  Google Scholar 

  19. Nakajima, R. et al. Giant spin polarization and a pair of antiparallel spins in a chiral superconductor. Nature 613, 479–484 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Di Nuzzo, D. et al. High circular polarization of electroluminescence achieved via self-assembly of a light-emitting chiral conjugated polymer into multidomain cholesteric films. ACS Nano 11, 12713–12722 (2017).

    Article  PubMed  Google Scholar 

  21. Kim, Y. H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Crassous, J. et al. Materials for chiral light control. Nat. Rev. Mater. 8, 365–371 (2023).

    Article  ADS  Google Scholar 

  23. Kiran, V. et al. Helicenes—a new class of organic spin filter. Adv. Mater. 28, 1957–1962 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. Bullard, G. et al. Low-resistance molecular wires propagate spin-polarized currents. J. Am. Chem. Soc. 141, 14707–14711 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni, C. et al. Highly efficient and tunable filtering of electrons’ spin by supramolecular chirality of nanofiber-based materials. Adv. Mater. 32, 1904965 (2020).

    Article  CAS  Google Scholar 

  26. Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Abendroth, J. M. et al. Spin selectivity in photoinduced charge-transfer mediated by chiral molecules. ACS Nano 13, 4928–4946 (2019).

    Article  CAS  PubMed  Google Scholar 

  28. Chiesa, A. et al. Assessing the nature of chiral-induced spin selectivity by magnetic resonance. J. Phys. Chem. Lett. 12, 6341–6347 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aiello, C. D. et al. A chirality-based quantum leap. ACS Nano 16, 4989–5035 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chiesa, A. et al. Chirality-induced spin selectivity: an enabling technology for quantum applications. Adv. Mater. 35, 2300472 (2023).

    Article  CAS  Google Scholar 

  31. Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Diao, Y. et al. Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains. Nat. Mater. 12, 665–671 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Diao, Y. et al. Flow-enhanced solution printing of all-polymer solar cells. Nat. Commun. 6, 7955 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Park, K. S. et al. Tuning conformation, assembly, and charge transport properties of conjugated polymers by printing flow. Sci. Adv. 5, eaaw7757 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Park, K. S., Kwok, J. J., Kafle, P. & Diao, Y. When assembly meets processing: tuning multiscale morphology of printed conjugated polymers for controlled charge transport. Chem. Mater. 33, 469–498 (2021).

    Article  CAS  Google Scholar 

  36. Park, K. S. et al. Chiral emergence in multistep hierarchical assembly of achiral conjugated polymers. Nat. Commun. 13, 2738 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wittmann, A. et al. Tuning spin current injection at ferromagnet-nonmagnet interfaces by molecular design. Phys. Rev. Lett. 124, 027204 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Vetter, E. et al. Tuning of spin-orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 4, 085603 (2020).

    Article  CAS  Google Scholar 

  39. Azevedo, A., Vilela-Leão, L. H., Rodríguez-Suárez, R. L., Lacerda Santos, A. F. & Rezende, S. M. Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: theory and experiment. Phys. Rev. B 83, 144402 (2011).

    Article  ADS  Google Scholar 

  40. Calavalle, F. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Ando, K. & Saitoh, E. Observation of the inverse spin Hall effect in silicon. Nat. Commun. 3, 629 (2012).

    Article  ADS  PubMed  Google Scholar 

  43. Wang, S.-J. et al. Long spin diffusion lengths in doped conjugated polymers due to enhanced exchange coupling. Nat. Electron. 2, 98–107 (2019).

    Article  CAS  Google Scholar 

  44. Yu, Z. G. Spin Hall effect in disordered organic solids. Phys. Rev. Lett. 115, 026601 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Sun, R. et al. Visualizing tailored spin phenomena in a reduced-dimensional topological superlattice. Adv. Mater. 32, 2005315 (2020).

    Article  CAS  Google Scholar 

  46. Chen, K. & Zhang, S. Spin pumping in the presence of spin-orbit coupling. Phys. Rev. Lett. 114, 126602 (2015).

    Article  ADS  PubMed  Google Scholar 

  47. Yu, Z. G. Chirality-induced spin–orbit coupling, spin transport, and natural optical activity in hybrid organic–inorganic perovskites. J. Phys. Chem. Lett. 11, 8638–8646 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Shitade, A. & Minamitani, E. Geometric spin–orbit coupling and chirality-induced spin selectivity. New J. Phys. 22, 113023 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Yu, Z. G. Spin-orbit coupling, spin relaxation, and spin diffusion in organic solids. Phys. Rev. Lett. 106, 106602 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Yu, Z. G. Spin-orbit coupling and its effects in organic solids. Phys. Rev. B 85, 115201 (2012).

    Article  ADS  Google Scholar 

  51. Lei, T., Dou, J.-H. & Pei, J. Influence of alkyl chain branching positions on the hole mobilities of polymer thin-film transistors. Adv. Mater. 24, 6457–6461 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.S., Y.D., A.H., W.Y., D.B. and P.Z. acknowledge financial support from the Air Force Office of Scientific Research, Multidisciplinary University Research Initiatives (MURI) programme under award number FA9550-23-1-0311. Device fabrication at NC State University was partially supported by the Department of Energy under award number DE-SC0020992 and the National Science Foundation under award DMR-2143642. Y.D. acknowledges financial support from the National Science Foundation under award DMR-1847828 and partial support by the Office of Naval Research under award number N00014-2220-1-2202. W.Y. acknowledges financial support from the Office of Naval Research under award number N00014-20-1-2181. Z.-G.Y. acknowledges financial support by the US Air Force (FA9550-22-P-0014). A.H. acknowledges financial support from the Illinois Materials Research Science and Engineering Center, supported by the National Science Foundation Materials Research Science and Engineering Centers (MRSEC) programme under National Science Foundation award no. DMR-1720633.

Author information

Authors and Affiliations

Authors

Contributions

D.S., Y.D. and R.S. conceived the experiment and supervised this research. R.S. and K.S.P. were responsible for the spin and electron transport measurements. K.S.P., R.S., A.H.C., A.M. and Y.-C.C. fabricated the samples. Z.-G.Y. provided the theoretical models. R.S., P.Z., D.B., W.Y. and A.H. conducted the spin transport analysis. R.S. and D.S. wrote the paper. All authors contributed to editing the paper.

Corresponding authors

Correspondence to Ying Diao or Dali Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–VII, Figs. 1–25 and Tables I–III.

Source data

Source Data Fig. 1

CD spectra data plotted in Fig. 1d.

Source Data Fig. 2

Spin-pumping response data plotted in Fig. 2b–d.

Source Data Fig. 3

Hanle effect data plotted in Fig. 3a,b.

Source Data Fig. 4

Summary data of StC conversion efficiency plotted in Fig. 4a, and spin relaxation time summary data plotted in Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Park, K.S., Comstock, A.H. et al. Inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Nat. Mater. (2024). https://doi.org/10.1038/s41563-024-01838-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-024-01838-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing