Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Seeded growth of single-crystal black phosphorus nanoribbons

Abstract

Two-dimensional materials have emerged as an important research frontier for overcoming the challenges in nanoelectronics and for exploring new physics. Among them, black phosphorus, with a combination of a tunable bandgap and high mobility, is one of the most promising systems. In particular, black phosphorus nanoribbons show excellent electrostatic gate control, which can mitigate short-channel effects in nanoscale transistors. Controlled synthesis of black phosphorus nanoribbons, however, has remained an outstanding problem. Here we report large-area growth of black phosphorus nanoribbons directly on insulating substrates. We seed the chemical vapour transport growth with black phosphorus nanoparticles and obtain uniform, single-crystal nanoribbons oriented exclusively along the [100] crystal direction. With comprehensive structural calculations, we discover that self-passivation at the zigzag edges holds the key to the preferential one-dimensional growth. Field-effect transistors based on individual nanoribbons exhibit on/off ratios up to ~104, confirming the good semiconducting behaviour of the nanoribbons. These results demonstrate the potential of black phosphorus nanoribbons for nanoelectronic devices and also provide a platform for investigating the exotic physics in black phosphorus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CVT growth of black phosphorus nanoribbons seeded by black phosphorus nanoparticles.
Fig. 2: AFM characterization of individual black phosphorus nanoribbons.
Fig. 3: TEM characterization of black phosphorus nanoribbons.
Fig. 4: Mechanism of black phosphorus nanoribbon growth.
Fig. 5: Black phosphorus nanoribbon FETs.

Similar content being viewed by others

Data availability

All the data generated and analysed in this study are included in the Article and its Supplementary Information, or via Zenodo at https://doi.org/10.5281/zenodo.10610515. Additional data related to the paper are available from the corresponding authors upon reasonable request.

References

  1. Li, L. et al. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Koenig, S. P., Doganov, R. A., Schmidt, H., Castro Neto, A. H. & Özyilmaz, B. Electric field effect in ultrathin black phosphorus. Appl. Phys. Lett. 104, 103106 (2014).

    Article  Google Scholar 

  4. Xia, F., Wang, H. & Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. Ling, X., Wang, H., Huang, S., Xia, F. & Dresselhaus, M. S. The renaissance of black phosphorus. Proc. Natl Acad. Sci. USA 112, 4523–4530 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Illarionov, Y. et al. Highly-stable black phosphorus field-effect transistors with low density of oxide traps. npj 2D Mater. Appl. 1, 23 (2017).

    Article  Google Scholar 

  7. Feng, X. et al. High mobility anisotropic black phosphorus nanoribbon field-effect transistor. Adv. Funct. Mater. 28, 1801524 (2018).

    Article  Google Scholar 

  8. Tan, W. C. et al. Recent advances in black phosphorus-based electronic devices. Adv. Electron. Mater. 5, 1800666 (2019).

    Article  Google Scholar 

  9. Buscema, M. et al. Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. Nano Lett. 14, 3347–3352 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, J. et al. Phosphorene nanoribbon as a promising candidate for thermoelectric applications. Sci. Rep. 4, 6452 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang, H. et al. Black phosphorus radio-frequency transistors. Nano Lett. 14, 6424–6429 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Wu, Q. et al. Electronic and transport properties of phosphorene nanoribbons. Phys. Rev. B 92, 035436 (2015).

    Article  Google Scholar 

  13. Guo, Q. et al. Black phosphorus mid-infrared photodetectors with high gain. Nano Lett. 16, 4648–4655 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Sci. Adv. 3, e1700589 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yu, W. et al. Facile production of phosphorene nanoribbons towards application in lithium metal battery. Adv. Mater. 33, 2102083 (2021).

    Article  CAS  Google Scholar 

  16. Macdonald, T. J. et al. Phosphorene nanoribbon-augmented optoelectronics for enhanced hole extraction. J. Am. Chem. Soc. 143, 21549–21559 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Nourbakhsh, Z. & Asgari, R. Excitons and optical spectra of phosphorene nanoribbons. Phys. Rev. B 94, 035437 (2016).

    Article  Google Scholar 

  18. Yang, Y.-R., Zhang, Z.-Q., Gu, L. & Fu, H.-H. Spin-dependent Seebeck effect in zigzag black phosphorene nanoribbons. RSC Adv. 6, 44019–44023 (2016).

    Article  CAS  Google Scholar 

  19. Yang, G., Xu, S., Zhang, W., Ma, T. & Wu, C. Room-temperature magnetism on the zigzag edges of phosphorene nanoribbons. Phys. Rev. B 94, 075106 (2016).

    Article  Google Scholar 

  20. Taghizadeh Sisakht, E., Fazileh, F., Zare, M. H., Zarenia, M. & Peeters, F. M. Strain-induced topological phase transition in phosphorene and in phosphorene nanoribbons. Phys. Rev. B 94, 085417 (2016).

    Article  Google Scholar 

  21. Ren, Y., Cheng, F., Zhang, Z.H. & Zhou, G. Half metal phase in the zigzag phosphorene nanoribbon. Sci. Rep. 8, 2932 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hu, T., Wu, H., Zeng, H., Deng, K. & Kan, E. New ferroelectric phase in atomic-thick phosphorene nanoribbons: existence of in-plane electric polarization. Nano Lett. 16, 8015–8020 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, W., Lin, L., Zhang, R., Yang, C. & Yang, J. Highly efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons. J. Am. Chem. Soc. 139, 15429–15436 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Sun, J., Li, X., Ullrich, C. A. & Yang, J. Excitons in bent black phosphorus nanoribbons: multiple excitonic funnels. Mater. Today Adv. 7, 100096 (2020).

    Article  Google Scholar 

  25. Housecroft, C. E. & Sharpe, A. G. in Inorganic Chemistry 2nd edn, Ch. 14 (Pearson Prentice Hall, 2005).

  26. Shriber, P., Samanta, A., Nessim, G. D. & Grinberg, I. First-principles investigation of black phosphorus synthesis. J. Phys. Chem. Lett. 9, 1759–1764 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Pielmeier, M. R. P. & Nilges, T. Formation mechanisms for phosphorene and SnIP. Angew. Chem. Int. Ed. 60, 6816–6823 (2021).

    Article  CAS  Google Scholar 

  28. Bridgman, P. W. Two new modifications of phosphorus. J. Am. Chem. Soc. 36, 1344–1363 (1914).

    Article  CAS  Google Scholar 

  29. Lange, S., Schmidt, P. & Nilges, T. Au3SnP7@black phosphorus: an easy access to black phosphorus. Inorg. Chem. 46, 4028–4035 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Wang, D. et al. Revisiting the growth of black phosphorus in Sn-I assisted reactions. Front. Chem. 7, 21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Li, S. et al. New strategy for black phosphorus crystal growth through ternary clathrate. Cryst. Growth Des. 17, 6579–6585 (2017).

    Article  CAS  Google Scholar 

  32. Li, C. et al. Synthesis of crystalline black phosphorus thin film on sapphire. Adv. Mater. 30, 1703748 (2018).

    Article  Google Scholar 

  33. Xu, Y. et al. Epitaxial nucleation and lateral growth of high-crystalline black phosphorus films on silicon. Nat. Commun. 11, 1330 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, C. et al. Growth of single-crystal black phosphorus and its alloy films through sustained feedstock release. Nat. Mater. 22, 717–724 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Jiang, X. et al. Stable one-dimensional single crystalline black phosphorus nanowires for gas sensing. ACS Appl. Nano Mater. 3, 3402–3409 (2020).

    Article  CAS  Google Scholar 

  37. Song, J. et al. Synthesis of highly stable one-dimensional black phosphorus/h-BN heterostructures: a novel flexible electronic platform. Chin. Phys. Lett. 37, 076203 (2020).

    Article  CAS  Google Scholar 

  38. Yu, Y. et al. Synthesis and electrical properties of single crystalline black phosphorus nanoribbons. CrystEngComm 22, 3824–3830 (2020).

    Article  CAS  Google Scholar 

  39. Zhao, M. et al. Growth mechanism and enhanced yield of black phosphorus microribbons. Cryst. Growth Des. 16, 1096–1103 (2016).

    Article  CAS  Google Scholar 

  40. Li, J. et al. Growth of black phosphorus nanobelts and microbelts. Small 14, 1702501 (2017).

    Article  Google Scholar 

  41. Liu, Z. et al. Unzipping of black phosphorus to form zigzag-phosphorene nanobelts. Nat. Commun. 11, 3917 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Watts, M. C. et al. Production of phosphorene nanoribbons. Nature 568, 216–220 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Macewicz, L., Pyrchla, K., Bogdanowicz, R., Sumanasekera, G. & Jasinski, J. B. Chemical vapor transport route toward black phosphorus nanobelts and nanoribbons. J. Phys. Chem. Lett. 12, 8347–8354 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Melville, H. W. & Gray, S. C. The vapour pressure of red phosphorus. Trans. Faraday Soc. 32, 1026–1030 (1936).

    Article  CAS  Google Scholar 

  45. Xu, S. & Arnsdorf, M. F. Calibration of the scanning (atomic) force microscope with gold particles. J. Microsc. 173, 199–210 (1994).

    Article  CAS  PubMed  Google Scholar 

  46. Güniat, L., Caroff, P. & Fontcuberta i Morral, A. Vapor phase growth of semiconductor nanowires: key developments and open questions. Chem. Rev. 119, 8958–8971 (2019).

    Article  PubMed  Google Scholar 

  47. Markov, I. & Stoyanov, S. Mechanisms of epitaxial growth. Contemp. Phys. 28, 267–320 (1987).

    Article  CAS  Google Scholar 

  48. Ding, L. & Ding, F. Self-passivation leads to semiconducting edges of black phosphorene. Nanoscale Horiz. 6, 148–155 (2021).

    Article  CAS  PubMed  Google Scholar 

  49. Liang, L. et al. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett. 14, 6400–6406 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Lee, S. et al. Atomically sharp, closed bilayer phosphorene edges by self-passivation. ACS Nano 16, 12822–12830 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2018).

    Article  CAS  Google Scholar 

  52. Urban, F., Lupina, G., Grillo, A., Martucciello, N. & Di Bartolomeo, A. Contact resistance and mobility in back-gate graphene transistors. Nano Express 1, 010001 (2020).

    Article  Google Scholar 

  53. He, J., Zhang, X., Wang, Y. & Huang, R. New method for extraction of MOSFET parameters. IEEE Electron Device Lett. 22, 597–599 (2001).

    Article  Google Scholar 

  54. Xu, Y., Minari, T., Tsukagoshi, K., Chroboczek, J. A. & Ghibaudo, G. Direct evaluation of low-field mobility and access resistance in pentacene field-effect transistors. J. Appl. Phys. 107, 114507 (2010).

    Article  Google Scholar 

  55. Liu, H., Neal, A. T. & Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 6, 8563–8569 (2012).

    Article  CAS  PubMed  Google Scholar 

  56. Chu, T., Vega, R. A., Alptekin, E., Guo, D. & Shang, H. Understanding short channel mobility degradation by accurate external resistance decomposition and intrinsic mobility extraction. J. Appl. Phys. 117, 064507 (2015).

    Article  Google Scholar 

  57. Gunawan, O. et al. Measurement of carrier mobility in silicon nanowires. Nano Lett. 8, 1566–1571 (2008).

    Article  PubMed  Google Scholar 

  58. Bang, K. et al. Effect of ribbon width on electrical transport properties of graphene nanoribbons. Nano Converg. 5, 7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Brown, A. & Rundqvist, S. Refinement of the crystal structure of black phosphorus. Acta Crystallogr. 19, 684–685 (1965).

  60. LeBeau, J. M., Findlay, S. D., Allen, L. J. & Stemmer, S. Quantitative atomic resolution scanning transmission electron microscopy. Phys. Rev. Lett. 100, 206101 (2008).

    Article  PubMed  Google Scholar 

  61. Kauko, H. et al. Compositional analysis of GaAs/AlGaAs heterostructures using quantitative scanning transmission electron microscopy. Appl. Phys. Lett. 103, 232111 (2013).

    Article  Google Scholar 

  62. Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).

    Article  Google Scholar 

  63. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Kresse, G. & Hafner, J. Ab initio molecular dynamics for open-shell transition metals. Phys. Rev. B 48, 13115–13118 (1993).

    Article  CAS  Google Scholar 

  65. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  66. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  67. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  68. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  69. Behnam, A. et al. Transport in nanoribbon interconnects obtained from graphene grown by chemical vapor deposition. Nano Lett. 12, 4424–4430 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Article  PubMed  Google Scholar 

  71. Shahidi, G. G., Antoniadis, D. A. & Smith, H. I. Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers. IEEE Electron Device Lett. 9, 94–96 (1988).

    Article  CAS  Google Scholar 

  72. Chen, X. et al. Large-velocity saturation in thin-film black phosphorus transistors. ACS Nano 12, 5003–5010 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Z. Zhang, J. Jia, X. Xie and Z. Xu for helpful discussions; L. Wang for helpful calculations; and Z. Jiang, T. Zhang and W. Tang for their help at the initial phase of the project. Part of the sample fabrication was conducted at the Nano-fabrication Laboratory at Fudan University. H.W., Y.S., L.M., N.T., R.Z., W.R. and Y.Z. acknowledge support from the National Key R&D Program of China (grant no. 2018YFA0305600), Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB30000000) and Shanghai Municipal Science and Technology Commission (grant no. 2019SHZDZX01). G.H., X.L. and C.Z. acknowledge support from the National Natural Science Foundation of China (grant no. 62171136). F.D., L.Q. and L.D. acknowledge the support of High Talent Support from Shenzhen Institute of Advanced Technology (grant no. SE3G0991010) and the startup grant from Shenzhen Institute of Advance Technology. S.H. acknowledges the China Postdoctoral Science Foundation (grant no. 2020TQ0078). H.Y. is grateful for the financial support from the National Natural Science Foundation of China (grant no. 12074085) and the Natural Science Foundation of Shanghai (grant nos 23XD1400200 and 23JC1401100). X.H.C. acknowledges support from the National Natural Science Foundation of China (grant nos 11888101 and 11534010), the National Key R&D Program of China (grant no. 2017YFA0303001), the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB25000000) and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (grant no. QYZDY-SSW-SLH021).

Author information

Authors and Affiliations

Authors

Contributions

Y.Z., C.Z., L.D. and X.H.C. supervised the project. H.W. and Y.S. grew the black phosphorus nanoribbons, fabricated FET devices and conducted transport and infrared spectroscopy measurements. G.H., X.L. and C.Z. performed the TEM characterization. F.D., L.Q. and L.D. carried out the theoretical calculations. S.H. and H.Y. helped with infrared spectroscopy measurements. L.M. and R.Z. helped with sample growth. N.T. helped with fabricating and measuring FET devices. H.W., Y.S., W.R. and Y.Z. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Yichen Song, Xian Hui Chen, Liping Ding, Changlin Zheng or Yuanbo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Tom Nilges and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Song, Y., Huang, G. et al. Seeded growth of single-crystal black phosphorus nanoribbons. Nat. Mater. 23, 470–478 (2024). https://doi.org/10.1038/s41563-024-01830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-024-01830-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing