Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compact angle-resolved metasurface spectrometer

Abstract

Light scattered or radiated from a material carries valuable information on the said material. Such information can be uncovered by measuring the light field at different angles and frequencies. However, this technique typically requires a large optical apparatus, hampering the widespread use of angle-resolved spectroscopy beyond the lab. Here we demonstrate compact angle-resolved spectral imaging by combining a tunable metasurface-based spectrometer array and a metalens. With this approach, even with a miniaturized spectrometer footprint of only 4 × 4 μm2, we demonstrate a wavelength accuracy of 0.17 nm, spectral resolution of 0.4 nm and a linear dynamic range of 149 dB. Moreover, our spectrometer has a detection limit of 1.2 fJ, and can be patterned to an array for spectral imaging. Placing such a spectrometer array directly at the back focal plane of a metalens, we achieve an angular resolution of 4.88 × 103 rad. Our angle-resolved spectrometers empowered by metalenses can be employed towards enhancing advanced optical imaging and spectral analysis applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design principles for angle-resolved metasurface spectrometers.
Fig. 2: Demonstration of a compact metasurface spectrometer.
Fig. 3: Characterization of microlasers with a compact metasurface spectrometer.
Fig. 4: Array of metasurface spectrometers for spectral imaging.
Fig. 5: Angle-resolved spectral analysis and imaging.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors on request.

Code availability

The code that supports the findings of this study is available from the corresponding authors on request.

References

  1. Wax, A., Yang, C., Dasari, R. R. & Feld, M. S. Measurement of angular distributions by use of low-coherence interferometry for light-scattering spectroscopy. Opt. Lett. 26, 322–324 (2001).

    CAS  Google Scholar 

  2. Schröder, S., Herffurth, T., Blaschke, H. & Duparré, A. Angle-resolved scattering: an effective method for characterizing thin-film coatings. Appl. Opt. 50, C164–C171 (2011).

    Google Scholar 

  3. Ling, X. et al. Anisotropic electron-photon and electron-phonon interactions in black phosphorus. Nano Lett. 16, 2260–2267 (2016).

    CAS  Google Scholar 

  4. Trost, M., Schröder, S., Feigl, T., Duparré, A. & Tünnermann, A. Influence of the substrate finish and thin film roughness on the optical performance of Mo/Si multilayers. Appl. Opt. 50, C148–C153 (2011).

    CAS  Google Scholar 

  5. Kim, Y. L. et al. Simultaneous measurement of angular and spectral properties of light scattering for characterization of tissue microarchitecture and its alteration in early precancer. IEEE J. Sel. Topics Quantum Electron. 9, 243–256 (2003).

    CAS  Google Scholar 

  6. Roy, H. K. et al. Four-dimensional elastic light-scattering fingerprints as preneoplastic markers in the rat model of colon carcinogenesis. Gastroenterology 126, 1071–1081 (2004).

    Google Scholar 

  7. Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21, 1210–1215 (2004).

    CAS  Google Scholar 

  8. Hänisch, C., Lenk, S. & Reineke, S. Refined setup for angle-resolved photoluminescence spectroscopy of thin films. Phys. Rev. Appl. 14, 064036 (2020).

    Google Scholar 

  9. Wagner, R., Heerklotz, L., Kortenbruck, N. & Cichos, F. Back focal plane imaging spectroscopy of photonic crystals. Appl. Phys. Lett. 101, 081904 (2012).

    Google Scholar 

  10. Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).

    CAS  Google Scholar 

  11. Chen, Y. et al. Observation of intrinsic chiral bound states in the continuum. Nature 613, 474–478 (2023).

    CAS  Google Scholar 

  12. Yang, Z., Albrow-Owen, T., Cai, W. & Hasan, T. Miniaturization of optical spectrometers. Science 371, eabe0722 (2021).

    CAS  Google Scholar 

  13. Wang, Z. et al. Single-shot on-chip spectral sensors based on photonic crystal slabs. Nat. Commun. 10, 1020 (2019).

    CAS  Google Scholar 

  14. Tittl, A. et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces. Science 360, 1105–1109 (2018).

    CAS  Google Scholar 

  15. Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    CAS  Google Scholar 

  16. Yang, Z. et al. Single-nanowire spectrometers. Science 365, 1017–1020 (2019).

    CAS  Google Scholar 

  17. Yuan, S., Naveh, D., Watanabe, K., Taniguchi, T. & Xia, F. A wavelength-scale black phosphorus spectrometer. Nat. Photon. 15, 601–607 (2021).

    CAS  Google Scholar 

  18. Guo, L. et al. A single-dot perovskite spectrometer. Adv. Mater. 34, 2200221 (2022).

    CAS  Google Scholar 

  19. Meng, J., Cadusch, J. J. & Crozier, K. B. Detector-only spectrometer based on structurally colored silicon nanowires and a reconstruction algorithm. Nano Lett. 20, 320–328 (2020).

    CAS  Google Scholar 

  20. Yoon, H. H. et al. Miniaturized spectrometers with a tunable van der Waals junction. Science 378, 296–299 (2022).

    CAS  Google Scholar 

  21. Yesilkoy, F. et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces. Nat. Photon. 13, 390–396 (2019).

    CAS  Google Scholar 

  22. Xiong, J. et al. Dynamic brain spectrum acquired by a real-time ultraspectral imaging chip with reconfigurable metasurfaces. Optica 9, 461–468 (2022).

    CAS  Google Scholar 

  23. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Google Scholar 

  24. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    CAS  Google Scholar 

  25. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    CAS  Google Scholar 

  26. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    CAS  Google Scholar 

  27. Santiago-Cruz, T. et al. Resonant metasurfaces for generating complex quantum states. Science 377, 991–995 (2022).

    CAS  Google Scholar 

  28. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Google Scholar 

  29. He, L. et al. Highly sensitive tin‐lead perovskite photodetectors with over 450 days stability enabled by synergistic engineering for pulse oximetry system. Adv. Mater. 35, 2210016 (2023).

    CAS  Google Scholar 

  30. Kim, W. et al. Perovskite multifunctional logic gates via bipolar photoresponse of single photodetector. Nat. Commun. 13, 720 (2022).

    CAS  Google Scholar 

  31. Liu, Y. et al. Perovskite-based color camera inspired by human visual cells. Light Sci. Appl. 12, 43 (2023).

    CAS  Google Scholar 

  32. Redding, B., Liew, S. F., Sarma, R. & Cao, H. Compact spectrometer based on a disordered photonic chip. Nat. Photon. 7, 746–751 (2013).

    CAS  Google Scholar 

  33. Zhu, Y., Lei, X., Wang, K. X. & Yu, Z. Compact CMOS spectral sensor for the visible spectrum. Photon. Res. 7, 961–966 (2019).

    CAS  Google Scholar 

  34. Gao, L., Qu, Y., Wang, L. & Yu, Z. Computational spectrometers enables by nanophotonics and deep learning. Nanophotonics 11, 2507–2509 (2022).

    CAS  Google Scholar 

  35. Yang, W. et al. Dynamic bifunctional metasurfaces for holography and color display. Adv. Mater. 33, 2101258 (2021).

    CAS  Google Scholar 

  36. Li, S.-Q. et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface. Science 364, 1087–1090 (2019).

    CAS  Google Scholar 

  37. Ni, Y. et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight 2, 23 (2022).

    Google Scholar 

  38. Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Google Scholar 

  39. Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).

    CAS  Google Scholar 

  40. Tang, H. et al. Ultrahigh-Q lead halide perovskite microlasers. Nano Lett. 23, 3418–3425 (2023).

    CAS  Google Scholar 

  41. Li, L. et al. Metalens-array–based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    CAS  Google Scholar 

  42. Lin, R. J. et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol. 14, 227–231 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Research and Development Program of China (grant nos. 2022YFA1404700 and 2021YFA1400802), National Natural Science Foundation of China (grant nos. 12025402, 12334016, 62125501, 6233000076, 12261131500, 92250302 and 11934012), New Cornerstone Science Foundation through XPLORER PRIZE, Shenzhen Fundamental Research Project (grant nos. JCYJ20210324120402006, JCYJ20220818102218040 and GXWD20220817145518001) and Fundamental Research Funds for the Central Universities (grant no. 2022FRRK030004), Y.K. acknowledges support from the Australian Research Council (grant no. DP210101292).

Author information

Authors and Affiliations

Authors

Contributions

Q.S., Y.K., S.X. and S.Y. conceived the idea and supervised the research. G.C. and Y.L. did the design. Y.L., Y.Z., X.J., Y.C., X.Z. and S.X. fabricated the samples. G.C., Y.L. and G.Q. performed the experimental measurements. S.X., Y.K., Q.S., J.H. and S.Y. analysed the results. All the authors discussed the contents and prepared the manuscript.

Corresponding authors

Correspondence to Shumin Xiao, Shaohua Yu, Yuri Kivshar or Qinghai Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Liang Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Notes 1–8 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, G., Li, Y., Zhang, Y. et al. Compact angle-resolved metasurface spectrometer. Nat. Mater. 23, 71–78 (2024). https://doi.org/10.1038/s41563-023-01710-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01710-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing