Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elastic microphase separation produces robust bicontinuous materials

Abstract

Bicontinuous microstructures are essential to the function of diverse natural and synthetic systems. Their synthesis has been based on two approaches: arrested phase separation or self-assembly of block copolymers. The former is attractive for its chemical simplicity and the latter, for its thermodynamic robustness. Here we introduce elastic microphase separation (EMPS) as an alternative approach to make bicontinuous microstructures. Conceptually, EMPS balances the molecular-scale forces that drive demixing with large-scale elasticity to encode a thermodynamic length scale. This process features a continuous phase transition, reversible without hysteresis. Practically, EMPS is triggered by simply supersaturating an elastomeric matrix with a liquid, resulting in uniform bicontinuous materials with a well-defined microscopic length scale tuned by the matrix stiffness. The versatility of EMPS is further demonstrated by fabricating bicontinuous materials with superior mechanical properties and controlled anisotropy and microstructural gradients. Overall, EMPS presents a robust alternative for the bulk fabrication of homogeneous bicontinuous materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EMPS produces bicontinuous microstructures with a well-defined spacing.
Fig. 2: EMPS is continuous and produces microstructures with a thermodynamically defined length scale.
Fig. 3: Matrix stiffness tunes the microstructural length scale and morphology.
Fig. 4: EMPS is a continuous hysteresis-free transition.
Fig. 5: EMPS produces versatile microstructures and the subsequent polymerization endows durability.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Further data supporting the findings of this study are available from C.F.-R. (carla.fernandezrico@mat.ethz.ch) or E.D. (eric.r.dufresne@cornell.edu) on reasonable request.

Code availability

The FFT code used in this study is available in the Supplementary Information and is also available from C.F.-R. (carla.fernandezrico@mat.ethz.ch) or E.D. (eric.r.dufresne@cornell.edu) on reasonable request.

References

  1. Clarke, S., Walsh, P., Maggs, C. & Buchanan, F. Designs from the deep: marine organisms for bone tissue engineering. Biotechnol. Adv. 29, 610–617 (2011).

    CAS  Google Scholar 

  2. Yang, T. et al. High strength and damage-tolerance in echinoderm stereom as a natural bicontinuous ceramic cellular solid. Nat. Commun. 13, 610–617 (2022).

    Google Scholar 

  3. Dufresne, E. R. et al. Self-assembly of amorphous biophotonic nanostructures by phase separation. Soft Matter 5, 1792–1795 (2009).

    CAS  Google Scholar 

  4. Saranathan, V., Narayanan, S., Sandy, A., Dufresne, E. R. & Prum, R. O. Evolution of single gyroid photonic crystals in bird feathers. Proc. Natl Acad. Sci. USA 118, e2101357118 (2021).

  5. Zielasek, V. et al. Gold catalysts: nanoporous gold foams. Angew. Chem. Int. Ed. 45, 8241–8244 (2006).

    CAS  Google Scholar 

  6. Li, Q. et al. Ordered bicontinuous mesoporous polymeric semiconductor photocatalyst. ACS Nano 14, 13652–13662 (2020).

    CAS  Google Scholar 

  7. Han, J. et al. Role of bicontinuous structure in elastomeric electrolytes for high-energy solid-state lithium-metal batteries. Adv. Mater. 35, 2205194 (2023).

    CAS  Google Scholar 

  8. Guo, X. et al. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery. Sci. Rep. 6, 33466 (2016).

    CAS  Google Scholar 

  9. Wohlwend, J., Sologubenko, A. S., Döbeli, M., Galinski, H. & Spolenak, R. Chemical engineering of Cu-Sn disordered network metamaterials. Nano Lett. 22, 853–859 (2022).

    CAS  Google Scholar 

  10. Shi, S., Li, Y., Ngo-Dinh, B.-N., Markmann, J. & Weissmöller, J. Scaling behavior of stiffness and strength of hierarchical network nanomaterials. Science 371, 1026–1033 (2021).

    CAS  Google Scholar 

  11. Biener, J. et al. Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379–2382 (2006).

    CAS  Google Scholar 

  12. Portela, C. M. et al. Extreme mechanical resilience of self-assembled nanolabyrinthine materials. Proc. Natl Acad. Sci. USA 117, 5686–5693 (2020).

    CAS  Google Scholar 

  13. Hsieh, M.-T., Endo, B., Zhang, Y., Bauer, J. & Valdevit, L. The mechanical response of cellular materials with spinodal topologies. J. Mech. Phys. Solids 125, 401–419 (2019).

    Google Scholar 

  14. Erlebacher, J., Aziz, M. J., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    CAS  Google Scholar 

  15. Bates, C. M. & Bates, F. S. 50th anniversary perspective: block polymers—pure potential. Macromolecules 50, 3–22 (2017).

    CAS  Google Scholar 

  16. Lu, X., Hasegawa, G., Kanamori, K. & Nakanishi, K. Hierarchically porous monoliths prepared via sol-gel process accompanied by spinodal decomposition. J. Sol-Gel Sci. Technol. 95, 530–550 (2020).

    CAS  Google Scholar 

  17. Chan, P. K. & Rey, A. D. Polymerization-induced phase separation. 1. Droplet size selection mechanism. Macromolecules 29, 8934–8941 (1996).

    CAS  Google Scholar 

  18. Wienk, I. et al. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 113, 361–371 (1996).

    CAS  Google Scholar 

  19. Lee, M. N. & Mohraz, A. Bicontinuous macroporous materials from bijel templates. Adv. Mater. 22, 4836–4841 (2010).

    CAS  Google Scholar 

  20. Thomas, E. L. et al. Ordered bicontinuous double-diamond structure of star block copolymers: a new equilibrium microdomain morphology. Macromolecules 19, 2197–2202 (1986).

    CAS  Google Scholar 

  21. Xiang, L. et al. Block copolymer self-assembly directed synthesis of porous materials with ordered bicontinuous structures and their potential applications. Adv. Mater. 35, 2207684 (2023).

    CAS  Google Scholar 

  22. Cates, M. E. & Clegg, P. S. Bijels: a new class of soft materials. Soft Matter 4, 2132–2138 (2008).

    CAS  Google Scholar 

  23. Guillen, G. R., Pan, Y., Li, M. & Hoek, E. M. V. Preparation and characterization of membranes formed by nonsolvent induced phase separation: a review. Ind. Eng. Chem. Res. 50, 3798–3817 (2011).

    CAS  Google Scholar 

  24. Fernández-Rico, C., Sai, T., Sicher, A., Style, R. W. & Dufresne, E. R. Putting the squeeze on phase separation. JACS Au 2, 66–73 (2022).

    Google Scholar 

  25. Zhang, Y., Lee, D. S., Meir, Y., Brangwynne, C. P. & Wingreen, N. S. Mechanical frustration of phase separation in the cell nucleus by chromatin. Phys. Rev. Lett. 126, 258102 (2021).

    CAS  Google Scholar 

  26. Tanaka, H. & Araki, T. Viscoelastic phase separation in soft matter: numerical-simulation study on its physical mechanism. Chem. Eng. Sci. 61, 2108–2141 (2006).

    CAS  Google Scholar 

  27. Style, R. W. et al. Liquid-liquid phase separation in an elastic network. Phys. Rev. X 8, 011028 (2018).

    CAS  Google Scholar 

  28. Rosowski, K. A. et al. Elastic ripening and inhibition of liquid–liquid phase separation. Nat. Phys. 16, 422–425 (2020).

    CAS  Google Scholar 

  29. Cahn, J. W. & Hilliard, J. E. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258–267 (1958).

    CAS  Google Scholar 

  30. Cahn, J. W. Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30, 1121–1124 (1959).

    CAS  Google Scholar 

  31. Cabral, J. T. & Higgins, J. S. Spinodal nanostructures in polymer blends: on the validity of the Cahn-Hilliard length scale prediction. Progr. Polym. Sci. 81, 1–21 (2018).

    CAS  Google Scholar 

  32. Aarts, D. G. A. L., Dullens, R. P. A. & Lekkerkerker, H. N. W. Interfacial dynamics in demixing systems with ultralow interfacial tension. New J. Phys. 7, 40 (2005).

    Google Scholar 

  33. Gibaud, T. & Schurtenberger, P. A closer look at arrested spinodal decomposition in protein solutions. J. Phys. Condens. Matter 21, 322201 (2009).

    Google Scholar 

  34. Kahrs, C. & Schwellenbach, J. Membrane formation via non-solvent induced phase separation using sustainable solvents: a comparative study. Polymer 186, 122071 (2020).

    CAS  Google Scholar 

  35. Herzig, E., White, K., Schofield, A., Poon, W. & Clegg, P. Bicontinuous emulsions stabilized solely by colloidal particles. Nat. Mater. 6, 966–971 (2007).

    CAS  Google Scholar 

  36. Khan, M. A. et al. Nanostructured, fluid-bicontinuous gels for continuous-flow liquid–liquid extraction. Adv. Mater. 34, 2109547 (2022).

    CAS  Google Scholar 

  37. Brujić, J. et al. 3D bulk measurements of the force distribution in a compressed emulsion system. Faraday Discuss. 123, 207–220 (2003).

    Google Scholar 

  38. Ronceray, P., Mao, S., Košmrlj, A. & Haataja, M. P. Liquid demixing in elastic networks: cavitation, permeation, or size selection? Europhys. Lett. 137, 67001 (2022).

    Google Scholar 

  39. Qiang, Y., Luo, C. & Zwicker, D. Theory of elastic microphase separation. Preprint at https://arxiv.org/abs/2307.06136 (2023).

  40. Cahn, J. W. On spinodal decomposition. Acta Metall. 9, 795–801 (1961).

    CAS  Google Scholar 

  41. Fröhlich, J., Niedermeier, W. & Luginsland, H.-D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos. A: Appl. Sci. Manuf. 36, 449–460 (2005).

    Google Scholar 

  42. Gong, J., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS  Google Scholar 

  43. Zhang, G., Kim, J., Hassan, S. & Suo, Z. Self-assembled nanocomposites of high water content and load-bearing capacity. Proc. Natl Acad. Sci. USA 119, e2203962119 (2022).

    CAS  Google Scholar 

  44. Kumar, S., Tan, S., Zheng, L. & Kochmann, D. M. Inverse-designed spinodoid metamaterials. npj Comput. Mater. 6, 73 (2020).

  45. Gibson, L. J. Biomechanics of cellular solids. J. Biomech. 38, 377–399 (2005).

    Google Scholar 

  46. Zeng, D., Ribbe, A., Kim, H. & Hayward, R. C. Stress-induced orientation of cocontinuous nanostructures within randomly end-linked copolymer networks. ACS Macro Lett. 7, 828–833 (2018).

    CAS  Google Scholar 

  47. Engelmayr Jr, G. C. et al. Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat. Mater. 7, 1003–1010 (2008).

    Google Scholar 

  48. Yongdae Shin, Y.-C. C. et al. Liquid nuclear condensates mechanically sense and restructure the genome. Cell 175, 1481–1491 (2019).

    Google Scholar 

  49. Wiegand, T. & Hyman, A. A. Drops and fibers—how biomolecular condensates and cytoskeletal filaments influence each other. Emerg. Top. Life Sci. 4, 247–261 (2020).

    Google Scholar 

  50. Peng, J., Tomsia, A. P., Jiang, L., Tang, B. Z. & Cheng, Q. Stiff and tough PDMS-MMT layered nanocomposites visualized by AIE luminogens. Nat. Commun. 12, 4539 (2021).

    CAS  Google Scholar 

  51. Phillip, W. A., O’Neill, B., Rodwogin, M., Hillmyer, M. A. & Cussler, E. Self-assembled block copolymer thin films as water filtration membranes. ACS Appl. Mater. Interfaces 2, 847–853 (2010).

    CAS  Google Scholar 

  52. Lee, M. J. et al. Elastomeric electrolytes for high-energy solid-state lithium batteries. Nature 601, 217–222 (2022).

    CAS  Google Scholar 

  53. Style, R. W. et al. Stiffening solids with liquid inclusions. Nat. Phys. 11, 82–87 (2015).

  54. Landau, L. D. & Ginzburg, V. L. On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20, 1064 (1950).

    Google Scholar 

  55. König, B., Ronsin, O. J. & Harting, J. Two-dimensional Cahn–Hilliard simulations for coarsening kinetics of spinodal decomposition in binary mixtures. Phys. Chem. Chem. Phys. 23, 24823–24833 (2021).

    Google Scholar 

Download references

Acknowledgements

C.F.-R. acknowledges funding from the ETH Zürich Fellowship; V.B., from Adolphe Merkle Foundation and ERC Advanced Grant PrISMoID (833895); S.H., from SNF Ambizione grant (PZ00P2186041); and E.R.D., from the Swiss National Science Foundation NCCR for Bioinspired Materials. We thank N. Xue, K. Parkatzidis, K. Rosowski, D. Zwicker and D. Kochmann for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

C.F.-R. and E.R.D. conceived the project and designed the experiments. C.F.-R., S.S. and C.L. performed the experiments, with input from A.S. and T.S. C.F.-R., R.W.S. and E.R.D. analysed and interpreted the experiments. V.B. performed the skeletonization analysis. H.O., P.C. and L.D.L. developed the theory and simulations, with input from R.W.S., S.H. and E.R.D. C.F.-R. and E.R.D. wrote the paper with inputs from all authors. E.R.D. supervised the project.

Corresponding author

Correspondence to Eric R. Dufresne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Mikko Haataja and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–13 and Figs. 1–15.

Supplementary Video 1

Confocal microscopy stack of a bicontinuous microstructure formed in 800 kPa PDMS. The field of view is 8 × 8 μm2 and the z step is 0.1 μm.

Supplementary Video 2

Confocal microscopy stack of a bicontinuous microstructure formed in 350 kPa PDMS. The field of view is 20 × 20 μm2 and the z step is 0.1 μm.

Supplementary Video 3

Confocal microscopy stack of a bicontinuous microstructure formed in 350 kPa PDMS. The field of view is 20 × 20 μm2 and the z step is 0.1 μm.

Source data

Source Data Fig. 1

Data used for the FFT analysis shown in Fig. 1f.

Source Data Fig. 2

FFT data and the corresponding peak analysis shown in Fig. 2c–f.

Source Data Fig. 3

Data used for the phase diagrams shown in Fig. 3d,e. The standard errors are included when appropriate.

Source Data Fig. 4

Data used for the phase diagrams shown in Fig. 4b–d. The standard errors are included when appropriate.

Source Data Fig. 5

Data for the strain–stress curves shown in Fig. 5b(ii).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Rico, C., Schreiber, S., Oudich, H. et al. Elastic microphase separation produces robust bicontinuous materials. Nat. Mater. 23, 124–130 (2024). https://doi.org/10.1038/s41563-023-01703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01703-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing