Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sequencing polymers to enable solid-state lithium batteries

Abstract

Rational designs of solid polymer electrolytes with high ion conduction are critical in enabling the creation of advanced lithium batteries. However, known polymer electrolytes have much lower ionic conductivity than liquid/ceramics at room temperature, which limits their practical use in batteries. Here we show that precise positioning of designed repeating units in alternating polymer sequences lays the foundation for homogenized Li+ distribution, non-aggregated Li+-anion solvation and sequence-assisted site-to-site ion migration, facilitating the tuning of Li+ conductivity by up to three orders of magnitude. The assembled all-solid-state batteries facilitate reversible and dendrite-mitigated cycling against Li metal from ambient to elevated temperatures. This work demonstrates a powerful molecular engineering means to access highly ion-conductive solid-state materials for next-generation energy devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Illustration of Li+ transport patterns during battery charging in different polymer electrolyte systems.
Fig. 2: Synthesis of alter-SIPE.
Fig. 3: Analysis of Li+ dissociation in different polymer sequences.
Fig. 4: Tailoring polymer structures and characterizations of thermal, Li+ transport and mechanical properties.
Fig. 5: Investigation of transport pathway and Li+ conduction.
Fig. 6: Dendrite-suppression behaviour and battery performance from ambient to elevated temperatures.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data supporting the findings of this study are included in the Supplementary Information.

References

  1. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Google Scholar 

  2. Albertus, P. et al. Challenges for and pathways toward Li-metal-based all-solid-state batteries. ACS Energy Lett. 6, 1399–1404 (2021).

    CAS  Google Scholar 

  3. Li, M., Lu, J., Chen, Z. & Amine, K. 30 Years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Google Scholar 

  4. Meng, Y. S., Srinivasan, V. & Xu, K. Designing better electrolytes. Science 378, 1065 (2022).

    Google Scholar 

  5. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    CAS  Google Scholar 

  6. Zhao, Q., Stalin, S., Zhao, C. Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    CAS  Google Scholar 

  7. Banerjee, A., Wang, X., Fang, C., Wu, E. A. & Meng, Y. S. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chem. Rev. 120, 6878–6933 (2020).

    CAS  Google Scholar 

  8. Chen, R. S., Li, Q. H., Yu, X. Q., Chen, L. Q. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2020).

    CAS  Google Scholar 

  9. Lopez, J., Mackanic, D. G., Cui, Y. & Bao, Z. N. Designing polymers for advanced battery chemistries. Nat. Rev. Mater. 4, 312–330 (2019).

    CAS  Google Scholar 

  10. Li, Z. Y., Zhang, H. R., Sun, X. L. & Yang, Y. Mitigating interfacial instability in polymer electrolyte-based solid-state lithium metal batteries with 4 V cathodes. ACS Energy Lett. 5, 3244–3253 (2020).

    CAS  Google Scholar 

  11. Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4418 (2004).

    CAS  Google Scholar 

  12. Bachman, J. C. et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 116, 140–162 (2016).

    CAS  Google Scholar 

  13. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    CAS  Google Scholar 

  14. Wang, X. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21, 1057–1065 (2022).

    CAS  Google Scholar 

  15. Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    CAS  Google Scholar 

  16. Bocharova, V. & Sokolov, A. P. Perspectives for polymer electrolytes: a view from fundamentals of ionic conductivity. Macromolecules 53, 4141–4157 (2020).

    CAS  Google Scholar 

  17. Cheng, X. L., Pan, J., Zhao, Y., Liao, M. & Peng, H. S. Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8, 1702184 (2018).

    Google Scholar 

  18. Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO-alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    CAS  Google Scholar 

  19. Wang, J. R., Li, S. Q., Zhao, Q., Song, C. & Xue, Z. G. Structure code for advanced polymer electrolyte in lithium‐ion batteries. Adv. Funct. Mater. 31, 2008208 (2020).

    Google Scholar 

  20. Qiao, B. et al. Supramolecular regulation of anions enhances conductivity and transference number of lithium in liquid electrolytes. J. Am. Chem. Soc. 140, 10932–10936 (2018).

    CAS  Google Scholar 

  21. Ma, Q. et al. Single lithium-ion conducting polymer electrolytes based on a super-delocalized polyanion. Angew. Chem. Inter. Ed. Engl. 55, 2521–2525 (2016).

    CAS  Google Scholar 

  22. Li, J. H. et al. Polymers in lithium-ion and lithium metal batteries. Adv. Energy Mater. 11, 2003239 (2021).

    CAS  Google Scholar 

  23. Zhang, H. et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017).

    CAS  Google Scholar 

  24. Lu, Y. Y., Korf, K., Kambe, Y., Tu, Z. Y. & Archer, L. A. Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Inter. Ed. Engl. 53, 488–492 (2014).

    CAS  Google Scholar 

  25. Doyle, M., Fuller, T. F. & Newman, J. The importance of the lithium ion transference number in lithium polymer cells. Electrochim. Acta 39, 2073–2081 (1994).

    CAS  Google Scholar 

  26. Li, S. P. et al. Single-ion homopolymer electrolytes with high transference number prepared by click chemistry and photoinduced metal-free atom-transfer radical polymerization. ACS Energy Lett. 3, 20–27 (2018).

    CAS  Google Scholar 

  27. Jangu, C. et al. Sulfonimide-containing triblock copolymers for improved conductivity and mechanical performance. Macromolecules 48, 4520–4528 (2015).

    CAS  Google Scholar 

  28. Lutz, J. F., Ouchi, M., Liu, D. R. & Sawamoto, M. Sequence-controlled polymers. Science 341, 1238149 (2013).

    Google Scholar 

  29. Barnes, J. C. et al. Iterative exponential growth of stereo- and sequence-controlled polymers. Nat. Chem. 7, 810–815 (2015).

    CAS  Google Scholar 

  30. Trigg, E. B. et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 17, 725–731 (2018).

    CAS  Google Scholar 

  31. Mao, G., Saboungi, M.-L., Price, D. L., Armand, M. B. & Howells, W. S. Structure of liquid PEO-LiTFSI electrolyte. Phys. Rev. Lett. 84, 5536–5539 (2000).

    CAS  Google Scholar 

  32. Makhlooghiazad, F. et al. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. Nat. Mater. 21, 228–236 (2022).

    CAS  Google Scholar 

  33. Cowie, J. M. G. Alternating Copolymers (Plenum Press, 1985).

  34. Corrigan, N. et al. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials design and applications. Prog. Polym. Sci. 111, 101311 (2020).

    CAS  Google Scholar 

  35. Zhao, Y. et al. Controlled radical copolymerization of fluoroalkenes by using light-driven redox-relay catalysis. Nat. Synth. 2, 653–662 (2023).

    Google Scholar 

  36. Zhang, W. X. et al. Molecularly tunable polyanions for single-ion conductors and poly(solvate ionic liquids). Chem. Mater. 33, 524–534 (2021).

    CAS  Google Scholar 

  37. Atik, J. et al. Cation-assisted lithium-ion transport for high-performance PEO-based ternary solid polymer electrolytes. Angew. Chem. Inter. Ed. Engl. 60, 11919–11927 (2021).

    CAS  Google Scholar 

  38. Ma, M. Y. et al. Designing weakly solvating solid main-chain fluoropolymer electrolytes: synergistically enhancing stability toward Li anodes and high-voltage cathodes. ACS Energy Lett. 6, 4255–4264 (2021).

    CAS  Google Scholar 

  39. Nurnberg, P. et al. Superionicity in ionic-liquid-based electrolytes induced by positive ion-ion correlations. J. Am. Chem. Soc. 144, 4657–4666 (2022).

    Google Scholar 

  40. Huang, Y. F. et al. A relaxor ferroelectric polymer with an ultrahigh dielectric constant largely promotes the dissociation of lithium salts to achieve high ionic conductivity. Energ. Environ. Sci. 14, 6021–6029 (2021).

    CAS  Google Scholar 

  41. Chen, F., Wang, X., Armand, M. & Forsyth, M. Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications. Nat. Mater. 21, 1175–1182 (2022).

    CAS  Google Scholar 

  42. Ue, M. & Mori, S. Mobility and ionic association of lithium salts in a propylene carbonate‐ethyl methyl carbonate mixed solvent. J. Electrochem. Soc. 142, 2577–2581 (1995).

    CAS  Google Scholar 

  43. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    CAS  Google Scholar 

  44. Bruce, P. G. & Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 225, 1–17 (1987).

    CAS  Google Scholar 

  45. Wang, Y. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. 20, 1255–1263 (2021).

    CAS  Google Scholar 

  46. Yu, Z. et al. A dynamic, electrolyte-blocking, and single-Ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    CAS  Google Scholar 

  47. Zhang, X. K. et al. Vertically aligned and continuous nanoscale ceramic-polymer interfaces in composite solid polymer electrolytes for enhanced ionic conductivity. Nano Lett. 18, 3829–3838 (2018).

    CAS  Google Scholar 

  48. Qing, X. et al. A functionalized metal organic framework-laden nanoporous polymer electrolyte for exceptionally stable lithium electrodeposition. Chem. Commun. 56, 15533–15536 (2020).

    CAS  Google Scholar 

  49. Lu, J. et al. The role of nanotechnology in the development of battery materials for electric vehicles. Nat. Nanotechnol. 11, 1031–1038 (2016).

    CAS  Google Scholar 

  50. Zhao, Y. et al. Organocatalyzed photoredox polymerization from aromatic sulfonyl halides: facilitating graft from aromatic C-H bonds. Macromolecules 51, 938–946 (2018).

    CAS  Google Scholar 

  51. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (no. 21971044 to M.C. and 52003231 to X.L.), the Shanghai Pilot Program for Basic Research-Fudan University 21TQ1400100 (no. 21TQ007 to M.C.) and the State Key Laboratory of Molecular Engineering of Polymers and Duke Kunshan University. We thank J. A. Johnson for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.H., X.L. and M.C. conceived the idea and designed the experiments. S.H. conducted major experiments and prepared the draft article. S.H. and X.L. contributed molecular dynamic simulations. P.W. and Y.Z. contributed DFT calculations. S.H., H.W., Y.G. and L.Z. conducted materials characterizations. S.H., Y.S.-H., X.L. and M.C. interpreted the data and completed the final manuscript writing.

Corresponding authors

Correspondence to Yang Shao-Horn, Xinrong Lin or Mao Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Renaud Bouchet and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–82 and Tables 1–17.

Source data

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Wen, P., Wang, H. et al. Sequencing polymers to enable solid-state lithium batteries. Nat. Mater. 22, 1515–1522 (2023). https://doi.org/10.1038/s41563-023-01693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01693-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing