Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers

Abstract

Twist angle between two-dimensional layers is a critical parameter that determines their interfacial properties, such as moiré excitons and interfacial ferro-electricity. To achieve better control over these properties for fundamental studies and various applications, considerable efforts have been made to manipulate twist angle. However, due to mechanical limitations and the inevitable formation of incommensurate regions, there remains a challenge in attaining perfect alignment of crystalline orientation. Here we report a thermally induced atomic reconstruction of randomly stacked transition metal dichalcogenide multilayers into fully commensurate heterostructures with zero twist angle by encapsulation annealing, regardless of twist angles of as-stacked samples and lattice mismatches. We also demonstrate the selective formation of R- and H-type fully commensurate phases with a seamless lateral junction using chemical vapour-deposited transition metal dichalcogenides. The resulting fully commensurate phases exhibit strong photoluminescence enhancement of the interlayer excitons, even at room temperature, due to their commensurate structure with aligned momentum coordinates. Our work not only demonstrates a way to fabricate zero-twisted, two-dimensional bilayers with R- and H-type configurations, but also provides a platform for studying their unexplored properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Atomic reconstruction to fully commensurate structure in twisted TMD vdW heterostructures.
Fig. 2: Dependence of stacking type and twist angle on thermally induced atomic reconstruction.
Fig. 3: Structural characteristics of FC heterostructures.
Fig. 4: PL measurements of hBN-encapsulated H-WSe2/MoSe2 at room temperature.
Fig. 5: PL measurements of hBN-encapsulated H-WSe2/MoSe2 at 77 K.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions are presented in the article and the Supplementary Information. Source data are provided with this paper.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  2. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  3. Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS  Google Scholar 

  4. Yu, H., Liu, G.-B. & Yao, W. Brightened spin-triplet interlayer excitons and optical selection rules in van der Waals heterobilayers. 2D Mater. 5, 035021 (2018).

    Google Scholar 

  5. Bai, Y. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. 19, 1068–1073 (2020).

  6. Shimazaki, Y. et al. Strongly correlated electrons and hybrid excitons in a moiré heterostructure. Nature 580, 472–477 (2020).

  7. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

  8. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

  9. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

  10. Carr, S. et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle. Phys. Rev. B 95, 075420 (2017).

    Google Scholar 

  11. Liao, M. et al. Precise control of the interlayer twist angle in large scale MoS2 homostructures. Nat. Commun. 11, 2153 (2020).

    CAS  Google Scholar 

  12. Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    CAS  Google Scholar 

  13. Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 9, 4068 (2018).

    Google Scholar 

  14. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    CAS  Google Scholar 

  15. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    CAS  Google Scholar 

  16. Zhao, S. et al. Excitons in mesoscopically reconstructed moiré heterostructures. Nat. Nanotechnol. 18, 572–579 (2023).

  17. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    CAS  Google Scholar 

  18. Holler, J. et al. Low-frequency Raman scattering in WSe2−MoSe2 heterobilayers: evidence for atomic reconstruction. Appl. Phys. Lett. 117, 013104 (2020).

    Google Scholar 

  19. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

  20. Quan, J. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

  21. Zhu, S. & Johnson, H. T. Moiré-templated strain patterning in transition-metal dichalcogenides and application in twisted bilayer MoS2. Nanoscale 10, 20689–20701 (2018).

  22. Vasu, K. S. et al. Van der Waals pressure and its effect on trapped interlayer molecules. Nat. Commun. 7, 12168 (2016).

    CAS  Google Scholar 

  23. Han, X. et al. Effects of hexagonal boron nitride encapsulation on the electronic structure of few-layer MoS2. J. Phys. Chem. C Nanometer Interfaces 123, 14797–14802 (2019).

    CAS  Google Scholar 

  24. Ryu, H. et al. Anomalous dimensionality-driven phase transition of MoTe2 in van der Waals heterostructure. Adv. Funct. Mater. 31, 2107376 (2021).

    CAS  Google Scholar 

  25. Li, J., Jia, L., Zheng, X., Peng, C. & Fu, X. Structural and elastic properties of WSe2: first-principles calculations. J. Phys. Conf. Ser. 1634, 012145 (2020).

    CAS  Google Scholar 

  26. Zhu, S., Pochet, P. & Johnson, H. T. Controlling rotation of two-dimensional material flakes. ACS Nano 13, 6925–6931 (2019).

    CAS  Google Scholar 

  27. Chen, J. et al. In situ high temperature atomic level dynamics of large inversion domain formations in monolayer MoS2. Nanoscale 11, 1901–1913 (2019).

    CAS  Google Scholar 

  28. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Google Scholar 

  29. Zheng, W. et al. Controlled growth of six-point stars MoS2 by chemical vapor deposition and its shape evolution mechanism. Nanotechnology 28, 395601 (2017).

    Google Scholar 

  30. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12, 554–561 (2013).

    Google Scholar 

  31. Zhao, X. et al. Healing of planar defects in 2D materials via grain boundary sliding. Adv. Mater. 31, e1900237 (2019).

    Google Scholar 

  32. Singh, Y., Back, S. & Jung, Y. Activating transition metal dichalcogenides by substitutional nitrogen-doping for potential ORR electrocatalysts. ChemElectroChem 5, 4029–4035 (2018).

    CAS  Google Scholar 

  33. Nayak, P. K. et al. Probing evolution of twist-angle-dependent interlayer excitons in MoSe2/WSe2 van der Waals heterostructures. ACS Nano 11, 4041–4050 (2017).

    CAS  Google Scholar 

  34. Paradisanos, I. et al. Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition. Nat. Commun. 11, 2391 (2020).

    CAS  Google Scholar 

  35. Yang, D. et al. Spontaneous-polarization-induced photovoltaic effect in rhombohedrally stacked MoS2. Nat. Photonics 16, 469–474 (2022).

    CAS  Google Scholar 

  36. Dadgar, A. M. et al. Strain engineering and Raman spectroscopy of monolayer transition metal dichalcogenides. Chem. Mater. 30, 5148–5155 (2018).

    CAS  Google Scholar 

  37. Horzum, S. et al. Phonon softening and direct to indirect band gap crossover in strained single-layer MoSe2. Phys. Rev. B 87, 125415 (2013).

    Google Scholar 

  38. Tang, Y. et al. Tuning layer-hybridized moiré excitons by the quantum-confined Stark effect. Nat. Nanotechnol. 16, 52–57 (2021).

  39. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    CAS  Google Scholar 

  40. Zhang, L. et al. Highly valley-polarized singlet and triplet interlayer excitons in van der Waals heterostructure. Phys. Rev. B 100, 041402 (2019).

    CAS  Google Scholar 

  41. Wang, T. et al. Giant Valley-Zeeman splitting from spin-singlet and spin-triplet interlayer excitons in WSe2/MoSe2 heterostructure. Nano Lett. 20, 694–700 (2020).

    CAS  Google Scholar 

  42. Li, Z. et al. Interlayer exciton transport in MoSe2/WSe2 heterostructures. ACS Nano 15, 1539–1547 (2021).

    CAS  Google Scholar 

  43. Schubert, E. F., Göbel, E. O., Horikoshi, Y., Ploog, K. & Queisser, H. J. Alloy broadening in photoluminescence spectra ofAlxGa1−xAs. Phys. Rev. B 30, 813–820 (1984).

  44. Cadiz, F. et al. Excitonic lidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021016 (2017).

    Google Scholar 

  45. Merritt, T. R. et al. Photoluminescence lineshape and dynamics of localized excitonic transitions in InAsP epitaxial layers. J. Appl. Phys. 115, 193503 (2014).

    Google Scholar 

  46. Hsu, W. T. et al. Negative circular polarization emissions from WSe2/MoSe2 commensurate heterobilayers. Nat. Commun. 9, 1356 (2018).

    Google Scholar 

  47. Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2-WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Google Scholar 

  48. Hanbicki, A. T. et al. Double indirect interlayer exciton in a MoSe2/WSe2 van der Waals heterostructure. ACS Nano 12, 4719–4726 (2018).

    CAS  Google Scholar 

  49. Alexeev, E. M. et al. Emergence of highly linearly polarized interlayer exciton emission in MoSe2/WSe2 heterobilayers with transfer-niduced layer corrugation. ACS Nano 14, 11110–11119 (2020).

    CAS  Google Scholar 

  50. Wu, B. et al. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 15, 2661–2666 (2021).

    Google Scholar 

  51. Mahdikhanysarvejahany, F. et al. Temperature dependent moiré trapping of interlayer excitons in MoSe2-WSe2 heterostructures. NPJ 2D Mater. Appl. 5, 67 (2021).

    CAS  Google Scholar 

  52. Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photonics 13, 131–136 (2019).

    CAS  Google Scholar 

  53. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotechnol. 17, 367–371 (2022).

    CAS  Google Scholar 

  54. Deb, S. et al. Cumulative polarization in conductive interfacial ferroelectrics. Nature 612, 465–469 (2022).

    CAS  Google Scholar 

  55. Rogée, L. et al. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides. Science 376, 973–978 (2022).

  56. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS  Google Scholar 

  57. Rokni, H. & Lu, W. Direct measurements of interfacial adhesion in 2D materials and van der Waals heterostructures in ambient air. Nat. Commun. 11, 5607 (2020).

    CAS  Google Scholar 

  58. Son, J. et al. Atomically precise graphene etch stops for three dimensional integrated systems from two dimensional material heterostructures. Nat. Commun. 9, 3988 (2018).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Research Foundation of Korea Grants funded by the Korean Government (nos. 2021R1A2C3014316, 2021M3F3A2A01037858 and 2017R1A5A1014862 (SRC programme: vdWMRC centre)) and the Creative-Pioneering Researchers Programme through Seoul National University. S.Y.L., H.J., J.K. and H.C. acknowledge the support by the National Research Foundation of Korea Grant funded by the Korean Government (no. 2019R1A2C3006189). K.W. and T.T. acknowledge the support from the Japan Society for the Promotion of Science, KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233) and from A3 Foresight by the Japan Society for the Promotion of Science. Support for P.Y.H. was provided by the Illinois Materials Research Science and Engineering Center through the National Science Foundation MRSEC programme (award no. DMR-1720633). G.-H.L. acknowledges the support from the Research Institute of Advanced Materials, Institute of Engineering Research, Institute of Applied Physics and Inter-University Semiconductor Research Center at Seoul National University.

Author information

Authors and Affiliations

Authors

Contributions

J.-H.B. and G.-H.L. designed and conceived the project. H.G.K., Y.C. and M.K. performed TEM and HAADF–STEM imaging. S.Y.L., H.J., J.K. and H.C. performed PL measurements at low temperature. H.R. fabricated samples for PL measurement. S.C.H. and Y.J. synthesized TMDs by CVD. Y.Z. and P.Y.H. discussed TEM and STEM results. K.W. and T.T. supplied boron nitride crystals. J.-H.B. and G.-H.L. jointly analysed the data and wrote the paper.

Corresponding author

Correspondence to Gwan-Hyoung Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Wen-Hao Chang, Ziliang Ye and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and discussion.

Source data

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, JH., Kim, H.G., Lim, S.Y. et al. Thermally induced atomic reconstruction into fully commensurate structures of transition metal dichalcogenide layers. Nat. Mater. 22, 1463–1469 (2023). https://doi.org/10.1038/s41563-023-01690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01690-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing