Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Precise molecular sieving of ethylene from ethane using triptycene-derived submicroporous carbon membranes

Abstract

Replacement or debottlenecking of the extremely energy-intensive cryogenic distillation technology for the separation of ethylene from ethane has been a long-standing challenge. Membrane technology could be a desirable alternative with potentially lower energy consumption. However, the current key obstacle for industrial implementation of membrane technology is the low mixed-gas selectivity of polymeric, inorganic or hybrid membrane materials, arising from the similar sizes of ethylene (3.75 Å) and ethane (3.85 Å). Here we report precise molecular sieving and plasticization-resistant carbon membranes made by pyrolysing a shape-persistent three-dimensional triptycene-based ladder polymer of intrinsic microporosity with unparalleled mixed-gas performance for ethylene/ethane separation, with a selectivity of ~100 at 10 bar feed pressure, and with long-term continuous stability for 30 days demonstrated. These submicroporous carbon membranes offer opportunities for membrane technology in a wide range of notoriously difficult separation applications in the petrochemical and natural gas industry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation and characterization of CMS membranes using 3D ladder polymer precursors.
Fig. 2: Effects of pyrolysis temperature on properties of CMS membranes.
Fig. 3: Structures of ladder triptycene-TB precursors and gas permeation properties of CMS membranes.
Fig. 4: Characterization of CMS membranes derived from Trip(Me2)-TB.
Fig. 5: Gas transport properties of CMS membranes.

Similar content being viewed by others

Data availability

All data generated and/or analysed in this study are included in this published article and its Supplementary Information file and are also available from the corresponding author upon request.

References

  1. Vora, B., Funk, G. & Bozzano. A. in Handbook of Petroleum Processing Vol. 1 (eds Treese, S. A. et al.) 883–904 (Springer, 2015).

  2. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Google Scholar 

  3. Eldridge, R. B. Olefin/paraffin separation technology: a review. Ind. Eng. Chem. Res. 32, 2208–2212 (1993).

    Google Scholar 

  4. Koros, W. J. Evolving beyond the thermal age of separation processes: membranes can lead the way. AIChE J. 50, 2326–2334 (2004).

    CAS  Google Scholar 

  5. Colling, C. W., Huff, J., Georgia, A. & Bartels, J. V. Processes using solid perm-selective membranes in multiple groups for simultaneous recovery of specified products from a fluid mixture. US patent 6,830,691 (2004).

  6. Ren, Y. et al. Membrane-based olefin/paraffin separations. Adv. Sci. 7, 2001398 (2020).

    CAS  Google Scholar 

  7. Rungta, M., Zhang, C., Koros, W. J. & Xu, L. Membrane-based ethylene/ethane separation: the upper bound and beyond. AIChE J. 59, 3475–3489 (2013).

    CAS  Google Scholar 

  8. Chan, S. S., Wang, R., Chung, T. S. & Liu, Y. C2 and C3 hydrocarbon separations in poly(1,5-naphthalene-2,2′-bis(3,4-phthalic) hexafluoropropane) diimide (6FDA-1,5-NDA) dense membranes. J. Membr. Sci. 210, 55–64 (2002).

    CAS  Google Scholar 

  9. Tanaka, K., Taguchi, A., Hao, J., Kita, H. & Okamoto, K. Permeation and separation properties of polyimide membranes to olefins and paraffins. J. Membr. Sci. 121, 197–207 (1996).

    CAS  Google Scholar 

  10. Staudt-Bickel, C. & Koros, W. J. Olefin/paraffin gas separations with 6FDA-based polyimide membranes. J. Membr. Sci. 170, 205–214 (2000).

    CAS  Google Scholar 

  11. Rungta, M., Xu, L. & Koros, W. J. Structure-performance characterization for carbon molecular sieve membranes using molecular scale gas probes. Carbon 85, 429–442 (2015).

    CAS  Google Scholar 

  12. Pinnau, I. & Toy, L. G. Solid polymer electrolyte composite membranes for olefin/paraffin separation. J. Membr. Sci. 184, 39–48 (2001).

    CAS  Google Scholar 

  13. Merkel, T. C. et al. Silver salt facilitated transport membranes for olefin/paraffin separations: carrier instability and a novel regeneration method. J. Membr. Sci. 447, 177–189 (2013).

    CAS  Google Scholar 

  14. Campos, A. C. C., Dos Reis, R. A., Ortiz, A., Gorri, D. & Ortiz, I. A perspective of solutions for membrane instabilities in olefin/paraffin separations: a review. Ind. Eng. Chem. Res. 57, 10071–10085 (2018).

    CAS  Google Scholar 

  15. Zheng, Y. et al. Preparation of steam-stable high-silica CHA (SSZ-13) membranes for CO2/CH4 and C2H4/C2H6 separation. J. Membr. Sci. 475, 303–310 (2015).

    CAS  Google Scholar 

  16. Pan, Y., Li, T., Lestari, G. & Lai, Z. Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. J. Membr. Sci. 390–391, 93–98 (2012).

    Google Scholar 

  17. Lin, R. B. et al. Molecular sieving of ethylene from ethane using a rigid metal–organic framework. Nat. Mater. 17, 1128–1133 (2018).

    CAS  Google Scholar 

  18. Li, L. et al. Ethane/ethylene separation in a metal-organic framework with iron-peroxo sites. Science 362, 443–446 (2018).

    CAS  Google Scholar 

  19. Bux, H., Chmelik, C., Krishna, R. & Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 369, 284–289 (2011).

    CAS  Google Scholar 

  20. James, J. B., Wang, J., L. Meng, L. & Lin, Y. S. ZIF-8 membrane ethylene/ethane transport characteristics in single and binary gas mixtures. Ind. Eng. Chem. Res. 56, 7567–7575 (2017).

    CAS  Google Scholar 

  21. Wei, R. et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci. Adv. 8, eabm6741 (2022).

    CAS  Google Scholar 

  22. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    CAS  Google Scholar 

  23. Ploegmakers, J., Japip, S. & Nijmeijer, K. Mixed matrix membranes containing MOFs for ethylene/ethane separation Part A: membrane preparation and characterization. J. Membr. Sci. 428, 445–453 (2013).

    CAS  Google Scholar 

  24. Chen, G. et al. M-gallate MOF/6FDA-polyimide mixed-matrix membranes for C2H4/C2H6 separation. J. Membr. Sci. 620, 118852 (2021).

    CAS  Google Scholar 

  25. Chen, X., Chen, G., Liu, G., Liu. G. & Jin, W. UTSA-280 metal–organic framework incorporated 6FDA-polyimide mixed-matrix membranes for ethylene/ethane separation. AIChE J. 68, e17688 (2022).

  26. Hayashi, J. I. et al. Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp′ODA polyimide membrane. Ind. Eng. Chem. Res. 35, 4176–4181 (1996).

    CAS  Google Scholar 

  27. Suda, H. & Haraya, K. Alkene/alkane permselectivities of a carbon molecular sieve membrane. Chem. Commun. https://doi.org/10.1039/A606385C (1997).

  28. Kiyono, M., Williams, P. J. & Koros, W. J. Effect of pyrolysis atmosphere on separation performance of carbon molecular sieve membranes. J. Membr. Sci. 359, 2–10 (2010).

    CAS  Google Scholar 

  29. Centeno, T. A., Vilas, J. L. & Fuertes, A. B. Effects of phenolic resin pyrolysis conditions on carbon membrane performance for gas separation. J. Membr. Sci. 228, 45–54 (2004).

    CAS  Google Scholar 

  30. Kiyono, M., Williams, P. J. & Koros, W. J. Generalization of effect of oxygen exposure on formation and performance of carbon molecular sieve membranes. Carbon 48, 4442–4449 (2010).

    CAS  Google Scholar 

  31. Ma, Y. et al. Creation of well-defined “mid-sized” micropores in carbon molecular sieve membranes. Angew. Chem. Int. Ed. 58, 13259–13265 (2019).

    CAS  Google Scholar 

  32. Das, M., Perry, J. D. & Koros, W. J. Effect of processing on carbon molecular sieve structure and performance. Carbon 48, 3737–3749 (2010).

    CAS  Google Scholar 

  33. Lua, A. C. & Su, J. Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon 44, 2964–2972 (2006).

    CAS  Google Scholar 

  34. Hazazi, K. et al. Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor. J. Membr. Sci. 585, 1–9 (2019).

    CAS  Google Scholar 

  35. Xu, L., Rungta, M. & Koros, W. J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138–147 (2011).

    CAS  Google Scholar 

  36. Xu, L. et al. Olefins-selective asymmetric carbon molecular sieve hollow fiber membranes for hybrid membrane-distillation processes for olefin/paraffin separations. J. Membr. Sci. 423–424, 314–323 (2012).

    Google Scholar 

  37. Rungta, M., Xu, L. & Koros, W. J. Carbon molecular sieve dense film membranes derived from Matrimid® for ethylene/ethane separation. Carbon 50, 1488–1502 (2012).

    CAS  Google Scholar 

  38. Adams, J. S. et al. New insights into structural evolution in carbon molecular sieve membranes during pyrolysis. Carbon 141, 238–246 (2019).

    CAS  Google Scholar 

  39. Wang, Q., Huang, F., Cornelius, C. J. & Fan, Y. Carbon molecular sieve membranes derived from crosslinkable polyimides for CO2/CH4 and C2H4/C2H6 separations. J. Membr. Sci. 621, 118785 (2021).

    CAS  Google Scholar 

  40. Chu, Y. H. et al. Iron-containing carbon molecular sieve membranes for advanced olefin/paraffin separations. J. Membr. Sci. 548, 609–620 (2018).

    CAS  Google Scholar 

  41. Liao, K. S., Japip, S., Lai, J. Y. & Chung, T. S. Boron-embedded hydrolyzed PIM-1 carbon membranes for synergistic ethylene/ethane purification. J. Membr. Sci. 534, 92–99 (2017).

    CAS  Google Scholar 

  42. Wang, Y. et al. Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations. Mater. Today Nano 3, 69–95 (2018).

    Google Scholar 

  43. Wang, Y. et al. Recent progress on polymers of intrinsic microporosity and thermally modified analogue materials for membrane-based fluid separations. Small Struct. 2, 2100049 (2021).

    CAS  Google Scholar 

  44. Wang, Y., Ghanem, B. S., Yu Han, Y. & Pinnau, I. State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes. Curr. Opin. Chem. Eng. 35, 100755 (2022).

    Google Scholar 

  45. Salinas, O., Ma, X., Litwiller, E. & Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016).

    CAS  Google Scholar 

  46. Salinas, O., Ma, X., Litwiller, E. & Pinnau, I. High-performance carbon molecular sieve membranes for ethylene/ethane separation derived from an intrinsically microporous polyimide. J. Membr. Sci. 500, 115–123 (2016).

    CAS  Google Scholar 

  47. Salinas, O., Ma, X., Wang, Y., Han, Y. & Pinnau, I. Carbon molecular sieve membrane from a microporous spirobisindane-based polyimide precursor with enhanced ethylene/ethane mixed-gas selectivity. RSC Adv. 7, 3265–3272 (2017).

    CAS  Google Scholar 

  48. Lei et al. Carbon membranes for CO2 removal: status and perspectives from materials to processes. Chem. Eng. J. 401, 126084 (2020).

    CAS  Google Scholar 

  49. Lei et al. Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 12, 268 (2021).

    CAS  Google Scholar 

  50. Cuesta, A., Dhamelincourt, P., Laureyns, J., Martínez-Alonso, A. & Tascón, J. M. D. Raman microprobe studies on carbon materials. Carbon 32, 1523–1532 (1994).

    CAS  Google Scholar 

  51. Freitas, J. C. C., Bonagamba, T. J. & Emmerich, F. G. Investigation of biomass- and polymer-based carbon materials using 13C high-resolution solid-state NMR. Carbon 39, 535–545 (2001).

    CAS  Google Scholar 

  52. Zhang, C. & Koros, W. J. Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29, 1701631 (2017).

    Google Scholar 

  53. Malpass-Evans, R. et al. Effect of bridgehead methyl substituents on the gas permeability of Tröger’s-base derived polymers of intrinsic microporosity. Membranes 10, 62 (2020).

    CAS  Google Scholar 

  54. Hazazi et al. Catalytic arene-norbornene annulation (CANAL) ladder polymer derived carbon membranes with unparalleled hydrogen/carbon dioxide size-sieving capability. J. Membr. Sci. 654, 120548 (2022).

    CAS  Google Scholar 

  55. Swaidan, R. Intrinsically Microporous Polymer Membranes for High Performance Gas Separation. PhD thesis, King Abdullah Univ. Science and Technology (2014).

  56. O’Brien, K. C., Koros, W. J. & Barbari, T. A. A new technique for the measurement of multicomponent gas transport through polymeric films. J. Membr. Sci. 29, 229–238 (1986).

    Google Scholar 

  57. Liu, Z., Qiu, W., Quan, W. & Koros, W. J. Advanced carbon molecular sieve membranes derived from molecularly engineered cross-linkable copolyimide for gas separations. Nat. Mater. 22, 109–116 (2023).

    CAS  Google Scholar 

  58. Cheng, Y. et al. Mixed matrix membranes with surface functionalized metal–organic framework sieves for efficient propylene/propane separation. Adv. Mater. 35, 2300296 (2023).

    CAS  Google Scholar 

  59. Yi, S., Ghanem, B., Liu, Y., Pinnau, I. & Koros, W. J. Ultraselective glassy polymer membranes with unprecedented performance for energy-efficient sour gas separation. Sci. Adv. 5, eaaw5459 (2019).

    Google Scholar 

  60. Knebel, A. et al. Solution processible metal–organic frameworks for mixed-matrix membranes using porous liquids. Nat. Mater. 19, 1346–1353 (2020).

    CAS  Google Scholar 

  61. Datta, S. J. et al. Rational design of mixed-matrix metal-organic framework membranes for molecular separations. Science 376, 1080–1087 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by baseline funding for I.P. (BAS/1/1323-01-01) and Y.H. (BAS/1/1372-01-01) from the King Abdullah University of Science and Technology (KAUST). We thank L. Liu at KAUST for her assistance in transmission electron microscopy analysis, A. H. M. Amwas at KAUST for his help in 13C solid-state NMR data collection and N. Wehbe at KAUST for his help in X-ray photoelectron spectroscopy data collection.

Author information

Authors and Affiliations

Authors

Contributions

K.H., Y.W. and I.P. designed the project. K.H., Y.W., X.H. and T.P. fabricated the CMS membranes and performed permeation tests. K.H. and Y.W. collected and analysed membrane characterization data. B.G. synthesized pristine Trip(Me2)-TB, EA(Me2)-TB and (Trip(Me2)-TB)0.5–(O-Trip(Me2)-TB)0.5 ladder polymers. C.C. and Y.H. performed transmission electron microscopy and data analysis. K.H., Y.W., Y.H. and I.P. prepared the paper with the input of the other coauthors. I.P. supervised the work.

Corresponding author

Correspondence to Ingo Pinnau.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xuezhong He and Ryan Lively for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–29, Tables 1–15 and Refs. 1–17.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hazazi, K., Wang, Y., Ghanem, B. et al. Precise molecular sieving of ethylene from ethane using triptycene-derived submicroporous carbon membranes. Nat. Mater. 22, 1218–1226 (2023). https://doi.org/10.1038/s41563-023-01629-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01629-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing