Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque

Abstract

Non-collinear antiferromagnets are an emerging family of spintronic materials because they not only possess the general advantages of antiferromagnets but also enable more advanced functionalities. Recently, in an intriguing non-collinear antiferromagnet Mn3Sn, where the octupole moment is defined as the collective magnetic order parameter, spin–orbit torque (SOT) switching has been achieved in seemingly the same protocol as in ferromagnets. Nevertheless, it is fundamentally important to explore the unknown octupole moment dynamics and contrast it with the magnetization vector of ferromagnets. Here we report a handedness anomaly in the SOT-driven dynamics of Mn3Sn: when spin current is injected, the octupole moment rotates in the opposite direction to the individual moments, leading to a SOT switching polarity distinct from ferromagnets. By using second-harmonic and d.c. magnetometry, we track the SOT effect onto the octupole moment during its rotation and reveal that the handedness anomaly stems from the interactions between the injected spin and the unique chiral-spin structure of Mn3Sn. We further establish the torque balancing equation of the magnetic octupole moment and quantify the SOT efficiency. Our finding provides a guideline for understanding and implementing the electrical manipulation of non-collinear antiferromagnets, which in nature differs from the well-established collinear magnets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural and transport properties in W(2 nm)/Ta(3 nm)/Mn3Sn(8.8 nm)/Pt(5 nm) stacks deposited on MgO(110) substrate.
Fig. 2: Measurement configurations and SOT switching.
Fig. 3: Harmonic Hall measurements and magnetic energy landscape.
Fig. 4: d.c. measurement and SOT switching mechanism of non-collinear antiferromagnetic order.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the Article and its Supplementary Information. Source data are provided with this paper.

Code availability

The calculation and simulation codes are available from the corresponding authors.

References

  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    CAS  Google Scholar 

  2. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Google Scholar 

  3. Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Google Scholar 

  4. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Google Scholar 

  5. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    CAS  Google Scholar 

  6. Higo, T. et al. Anomalous Hall effect in thin films of the Weyl antiferromagnet Mn3Sn. Appl. Phys. Lett. 113, 202402 (2018).

    Google Scholar 

  7. Ikeda, T. et al. Anomalous Hall effect in polycrystalline Mn3Sn thin films. Appl. Phys. Lett. 113, 222405 (2018).

    Google Scholar 

  8. Ikhlas, M. et al. Large anomalous Nernst effect at room temperature in a chiral antiferromagnet. Nat. Phys. 13, 1085–1090 (2017).

    CAS  Google Scholar 

  9. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    CAS  Google Scholar 

  10. Uchimura, T. et al. Observation of domain structure in non-collinear antiferromagnetic Mn3Sn thin films by magneto-optical Kerr effect. Appl. Phys. Lett. 120, 172405 (2022).

    CAS  Google Scholar 

  11. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Google Scholar 

  12. Shao, Q. et al. Roadmap of spin–orbit torques. IEEE Trans. Magn. 57, 1–39 (2021).

    Google Scholar 

  13. Ryu, J., Lee, S., Lee, K.-J. & Park, B.-G. Current-induced spin–orbit torques for spintronic applications. Adv. Mater. 32, 1907148 (2020).

    CAS  Google Scholar 

  14. Takeuchi, Y. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021).

    CAS  Google Scholar 

  15. Yan, G. Q. et al. Quantum sensing and imaging of spin–orbit-torque-driven spin dynamics in the non-collinear antiferromagnet Mn3Sn. Adv. Mater. 34, 2200327 (2022).

    CAS  Google Scholar 

  16. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    CAS  Google Scholar 

  17. Pal, B. et al. Setting of the magnetic structure of chiral kagome antiferromagnets by a seeded spin-orbit torque. Sci. Adv. 8, eabo5930 (2022).

    CAS  Google Scholar 

  18. Higo, T. et al. Perpendicular full switching of chiral antiferromagnetic order by current. Nature 607, 474–479 (2022).

    CAS  Google Scholar 

  19. Krishnaswamy, G. K. et al. Time-dependent multistate switching of topological antiferromagnetic order in Mn3Sn. Phys. Rev. Appl. 18, 024064 (2022).

    CAS  Google Scholar 

  20. Suzuki, M.-T., Koretsune, T., Ochi, M. & Arita, R. Cluster multipole theory for anomalous Hall effect in antiferromagnets. Phys. Rev. B 95, 094406 (2017).

    Google Scholar 

  21. Nomoto, T. & Arita, R. Cluster multipole dynamics in noncollinear antiferromagnets. Phys. Rev. Res. 2, 012045 (2020).

    CAS  Google Scholar 

  22. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Google Scholar 

  23. Finley, J. & Liu, L. Spintronics with compensated ferrimagnets. Appl. Phys. Lett. 116, 110501 (2020).

    CAS  Google Scholar 

  24. Kim, S. K. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022).

    CAS  Google Scholar 

  25. Cheng, R., Xiao, J., Niu, Q. & Brataas, A. Spin pumping and spin-transfer torques in antiferromagnets. Phys. Rev. Lett. 113, 057601 (2014).

    CAS  Google Scholar 

  26. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    CAS  Google Scholar 

  27. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982).

    CAS  Google Scholar 

  28. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn. 51, 2478–2486 (1982).

    CAS  Google Scholar 

  29. Cable, J. W., Wakabayashi, N. & Radhakrishna, P. Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys. Rev. B 48, 6159–6166 (1993).

    CAS  Google Scholar 

  30. Sandratskii, L. M. & Kübler, J. Role of orbital polarization in weak ferromagnetism. Phys. Rev. Lett. 76, 4963–4966 (1996).

    CAS  Google Scholar 

  31. Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2019).

    Google Scholar 

  32. Yoon, J.-Y. et al. Correlation of anomalous Hall effect with structural parameters and magnetic ordering in Mn3+xSn1−x thin films. AIP Adv. 11, 065318 (2021).

    CAS  Google Scholar 

  33. Zhang, P. et al. Control of Néel vector with spin-orbit torques in an antiferromagnetic insulator with tilted easy plane. Phys. Rev. Lett. 129, 017203 (2022).

    CAS  Google Scholar 

  34. Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).

    CAS  Google Scholar 

  35. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Google Scholar 

  36. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. N. J. Phys. 19, 015008 (2017).

    Google Scholar 

  37. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Google Scholar 

  38. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Google Scholar 

  39. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Google Scholar 

  40. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Google Scholar 

  41. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Google Scholar 

  42. Duan, T. F. et al. Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states. Appl. Phys. Lett. 107, 082403 (2015).

    Google Scholar 

  43. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    Google Scholar 

  44. Xie, H. et al. Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current. Nat. Commun. 13, 5744 (2022).

    CAS  Google Scholar 

  45. Chiang, C. C., Huang, S. Y., Qu, D., Wu, P. H. & Chien, C. L. Absence of evidence of electrical switching of the antiferromagnetic Néel vector. Phys. Rev. Lett. 123, 227203 (2019).

    CAS  Google Scholar 

  46. Zhang, P., Finley, J., Safi, T. & Liu, L. Quantitative study on current-induced effect in an antiferromagnet insulator/Pt bilayer film. Phys. Rev. Lett. 123, 247206 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Ieda, B. Jinnai, J. Llandro, Y. Yamane, K. Kishi and Y. Sato for their technical support and fruitful discussions. Reciprocal space mapping was performed at the Fundamental Technology Center of RIEC in Tohoku University with technical support from T. Tanno. This work was supported by the JSPS Kakenhi (grant nos. 19H05622, 21J23061, 22F32037 and 22K14558), Iketani Science and Technology Foundation (grant no. 0331108-A), Casio Science and Technology Foundation (grant nos. 39-11 and 40-4), Research Institute of Electrical Communication Cooperative Research Projects, National Science Foundation under award no. DMR-2104912 and Semiconductor Research Corporation. J.-Y.Y. and T.U. acknowledge support from GP-Spin at Tohoku University. P.Z. acknowledges support from the Mathworks Fellowship. J.H. acknowledges support from the JSPS Postdoctoral Fellowship for Research in Japan.

Author information

Authors and Affiliations

Authors

Contributions

J.-Y.Y., P.Z., J.H., H.O., S.F. and L.L. planned the study. J.-Y.Y., Y.T. and T.U. prepared the samples with guidance from S.F. J.-Y.Y., P.Z., C.-T.C. and J.T.H. fabricated the films into Hall bar devices and set the samples for transport measurements. J.-Y.Y. and P.Z. performed transport measurements and analysed the data with advice from Y.T., J.H., S.F. and L.L. J.-Y.Y. and C.-T.C. performed the X-ray diffraction and analysed the structural properties of Mn3Sn. P.Z. performed the theoretical calculation with input from J.-Y.Y. and L.L. J.H. and L.L. conceptualized the findings with input from S.F. All authors discussed the results. J.-Y.Y., P.Z., J.H. and L.L. wrote the manuscript with input from S.F. L.L. supervised the research.

Corresponding authors

Correspondence to Jiahao Han, Shunsuke Fukami or Luqiao Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Andrew Kent and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions 1–5, Figs. 1–6 and References

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, JY., Zhang, P., Chou, CT. et al. Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque. Nat. Mater. 22, 1106–1113 (2023). https://doi.org/10.1038/s41563-023-01620-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01620-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing