Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainable electronic textiles towards scalable commercialization

Abstract

Textiles represent a fundamental material format that is extensively integrated into our everyday lives. The quest for more versatile and body-compatible wearable electronics has led to the rise of electronic textiles (e-textiles). By enhancing textiles with electronic functionalities, e-textiles define a new frontier of wearable platforms for human augmentation. To realize the transformational impact of wearable e-textiles, materials innovations can pave the way for effective user adoption and the creation of a sustainable circular economy. We propose a repair, recycle, replacement and reduction circular e-textile paradigm. We envisage a systematic design framework embodying material selection and biofabrication concepts that can unify environmental friendliness, market viability, supply-chain resilience and user experience quality. This framework establishes a set of actionable principles for the industrialization and commercialization of future sustainable e-textile products.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overarching frameworks that promote the scalable commercialization of e-textiles.
Fig. 2: Materials selection chart for e-textiles and their durability challenge.
Fig. 3: The 4R implementation and sustainability development timeline for e-textiles.
Fig. 4: Emerging material fabricators and biofabrication technologies for different production scales and flexibilities.

Similar content being viewed by others

References

  1. Barber, E. J. W. Prehistoric Textiles: The Development of Cloth in the Neolithic and Bronze Ages with Special Reference to the Aegean (Princeton Univ. Press, 1991).

  2. Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020).

    Article  CAS  Google Scholar 

  3. Liao, M. et al. Industrial scale production of fibre batteries by a solution-extrusion method. Nat. Nanotechnol. 17, 372–377 (2022).

    Article  CAS  Google Scholar 

  4. Fan, W. et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6, eaay2840 (2020).

    Article  CAS  Google Scholar 

  5. Yan, W. et al. Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 603, 616–623 (2022).

    Article  CAS  Google Scholar 

  6. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Article  CAS  Google Scholar 

  7. Maziz, A. et al. Knitting and weaving artificial muscles. Sci. Adv. 3, e1600327 (2017).

    Article  Google Scholar 

  8. Rajappan, A. et al. Logic-enabled textiles. Proc. Natl Acad. Sci. USA 119, e2202118119 (2022).

    Article  CAS  Google Scholar 

  9. Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    Article  CAS  Google Scholar 

  10. Chen, G. et al. Electronic textiles for wearable point-of-care systems. Chem. Rev. 122, 3259–3291 (2021).

    Article  Google Scholar 

  11. Zhu, B. et al. Subambient daytime radiative cooling textile based on nanoprocessed silk. Nat. Nanotechnol. 16, 1342–1348 (2021).

    Article  CAS  Google Scholar 

  12. Park, H. L. et al. Flexible neuromorphic electronics for computing, soft robotics, and neuroprosthetics. Adv. Mater. 32, 1903558 (2020).

    Article  CAS  Google Scholar 

  13. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  CAS  Google Scholar 

  14. Hexoskin https://www.hexoskin.com/ (accessed 15 January 2023).

  15. Myant https://www.myant.ca/ (accessed 15 January 2023).

  16. Nanowear Inc. https://www.nanowearinc.com/ (accessed 15 January 2023).

  17. Clim8 https://www.myclim8.com/ (accessed 15 January 2023).

  18. Fieldsheer https://www.fieldsheer.com (accessed 15 January 2023).

  19. Ororo Wear https://www.ororowear.com/ (accessed 15 January 2023).

  20. Advanced Functional Fabrics of America https://www.affoa.org/ (accessed 15 January 2023).

  21. Adetexs Advanced Textiles https://www.adetexs.com/ (accessed 15 January 2023).

  22. Hype Cycle for Consumer Devices (Gartner, 2015).

  23. Jansen, K. M. How to shape the future of smart clothing. In Adjunct Proc. 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proc. 2019 ACM International Symposium on Wearable Computers 1037–1039 (ACM, 2019).

  24. Hayward, J. E-textiles and Smart Clothing 2020-2030: Technologies, Markets and Players (IDTechEx, 2020); https://www.idtechex.com/en/research-report/e-textiles-and-smart-clothing-2020-2030-technologies-markets-and-players/735

  25. Forti, V., Balde, C. P., Kuehr, R. & Bel, G. The Global E-waste Monitor 2020: Quantities, Flows and the Circular Economy Potential (UNU/UNITAR, ITU and ISWA 2020); https://ewastemonitor.info/wp-content/uploads/2020/11/GEM_2020_def_july1_low.pdf

  26. Paraschiv, D., Tudor, C. & Petrariu, R. The textile industry and sustainable development: a Holt–Winters forecasting investigation for the Eastern European area. Sustainability 7, 1280–1291 (2015).

    Article  Google Scholar 

  27. Boucher, J. & Friot, D. Primary Microplastics in the Oceans: A Global Evaluation of Sources (IUCN, 2017).

    Book  Google Scholar 

  28. Ball, P. Materials innovation from quantum to global. Nat. Mater. 21, 962–967 (2022).

    Article  CAS  Google Scholar 

  29. Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2020).

    Article  CAS  Google Scholar 

  30. Hwang, S. et al. Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nat. Commun. 13, 3173 (2022).

    Article  CAS  Google Scholar 

  31. Sanjay, M. et al. Characterization and properties of natural fiber polymer composites: a comprehensive review. J. Clean. Prod. 172, 566–581 (2018).

    Article  CAS  Google Scholar 

  32. Ma, Y., Feng, X., Rogers, J. A., Huang, Y. & Zhang, Y. Design and application of ‘J-shaped’ stress–strain behavior in stretchable electronics: a review. Lab Chip 17, 1689–1704 (2017).

  33. Gong, S., Zhang, B., Zhang, J., Wang, Z. L. & Ren, K. Biocompatible poly (lactic acid)‐based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 30, 1908724 (2020).

    Article  CAS  Google Scholar 

  34. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  Google Scholar 

  35. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  Google Scholar 

  36. Sadanandan, K. S. et al. Graphene coated fabrics by ultrasonic spray coating for wearable electronics and smart textiles. J. Phys. Mater. 4, 014004 (2020).

    Article  Google Scholar 

  37. Bashid, H. A. A. et al. Electrodeposition of polypyrrole and reduced graphene oxide onto carbon bundle fibre as electrode for supercapacitor. Nanosc. Res. Lett. 12, 246 (2017).

    Article  Google Scholar 

  38. Brookstein, D. S. Factors associated with textile pattern dermatitis caused by contact allergy to dyes, finishes, foams, and preservatives. Dermatol. Clin. 27, 309–322 (2009).

    Article  CAS  Google Scholar 

  39. Baroli, B. Penetration of nanoparticles and nanomaterials in the skin: fiction or reality? J. Pharm. Sci. 99, 21–50 (2010).

    Article  CAS  Google Scholar 

  40. Monteiro-Riviere, N. A. & Inman, A. O. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 44, 1070–1078 (2006).

    Article  CAS  Google Scholar 

  41. Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    Article  CAS  Google Scholar 

  42. Xu, Z. & Gao, C. Graphene fiber: a new trend in carbon fibers. Mater. Today 18, 480–492 (2015).

    Article  CAS  Google Scholar 

  43. Napper, I. E. & Thompson, R. C. Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar. Pollut. Bull. 112, 39–45 (2016).

    Article  CAS  Google Scholar 

  44. Lahiri, S. K., Azimi Dijvejin, Z. & Golovin, K. Polydimethylsiloxane-coated textiles with minimized microplastic pollution. Nat. Sustain. 6, 559–567 (2023).

  45. Ju, B. et al. Inkjet printed textile force sensitive resistors for wearable and healthcare devices. Adv. Healthc. Mater. 10, 2100893 (2021).

    Article  CAS  Google Scholar 

  46. Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    Article  CAS  Google Scholar 

  47. Feilden, E. et al. 3D printing bioinspired ceramic composites. Sci. Rep. 7, 13759 (2017).

    Article  Google Scholar 

  48. Wang, W. et al. Inflight fiber printing toward array and 3D optoelectronic and sensing architectures. Sci. Adv. 6, eaba0931 (2020).

    Article  CAS  Google Scholar 

  49. Singh, A., Panghal, D. & Jana, P. Automatic seam ripping system. Proc. Manuf. 30, 98–105 (2019).

    Google Scholar 

  50. Kirschner, M. Why the circular economy will drive green and sustainable chemistry in electronics. Adv. Sustain. Syst. 6, 2100046 (2021).

    Article  Google Scholar 

  51. A New Circular Vision for Electronics: Time for a Global Reboot (World Economic Forum, 2019).

  52. Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Article  CAS  Google Scholar 

  53. Köhler, A. R. Challenges for eco-design of emerging technologies: the case of electronic textiles. Mater. Des. 51, 51–60 (2013).

    Article  Google Scholar 

  54. Maity, S. & Chatterjee, A. Conductive polymer-based electro-conductive textile composites for electromagnetic interference shielding: a review. J. Ind. Text. 47, 2228–2252 (2018).

    Article  CAS  Google Scholar 

  55. Kizildag, N. & Ucar, N. Nanocomposite polyacrylonitrile filaments with electrostatic dissipative and antibacterial properties. J. Composite Mater. 50, 4279–4289 (2016).

    Article  CAS  Google Scholar 

  56. Ford, S. & Minshall, T. Invited review article: where and how 3D printing is used in teaching and education. Addit. Manuf. 25, 131–150 (2019).

    Google Scholar 

  57. Alshabouna, F. et al. PEDOT: PSS-modified cotton conductive thread for mass manufacturing of textile-based electrical wearable sensors by computerized embroidery. Mater. Today 59, 56–67 (2022).

    Article  CAS  Google Scholar 

  58. Chandler, A. D. Jr, Hikino, T. & Von Nordenflycht, A. Inventing the Electronic Century: The Epic Story of the Consumer Electronics and Cmputer Industries Vol. 47 (Harvard Univ. Press, 2005).

  59. Liu, S. et al. A neuroanatomical basis for electroacupuncture to drive the vagal–adrenal axis. Nature 598, 641–645 (2021).

    Article  CAS  Google Scholar 

  60. Vatankhah-Varnosfaderani, M. et al. Chameleon-like elastomers with molecularly encoded strain-adaptive stiffening and coloration. Science 359, 1509–1513 (2018).

    Article  CAS  Google Scholar 

  61. Yuk, H., Zhang, T., Parada, G. A., Liu, X. & Zhao, X. Skin-inspired hydrogel–elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 7, 12028 (2016).

    Article  Google Scholar 

  62. Liu, X., Liu, J., Lin, S. & Zhao, X. Hydrogel machines. Mater. Today 36, 102–124 (2020).

    Article  CAS  Google Scholar 

  63. Song, E. et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat. Biomed. Eng. 5, 759–771 (2021).

    Article  CAS  Google Scholar 

  64. Yu, B. et al. An elastic second skin. Nat. Mater. 15, 911–918 (2016).

    Article  CAS  Google Scholar 

  65. Yan, D. et al. Soft three-dimensional network materials with rational bio-mimetic designs. Nat. Commun. 11, 1180 (2020).

    Article  CAS  Google Scholar 

  66. Lee, S. et al. Nanomesh pressure sensor for monitoring finger manipulation without sensory interference. Science 370, 966–970 (2020).

    Article  CAS  Google Scholar 

  67. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    Article  CAS  Google Scholar 

  68. Buckner, T. L., Bilodeau, R. A., Kim, S. Y. & Kramer-Bottiglio, R. Roboticizing fabric by integrating functional fibers. Proc. Natl Acad. Sci. USA 117, 25360–25369 (2020).

    Article  CAS  Google Scholar 

  69. Kanik, M. et al. Strain-programmable fiber-based artificial muscle. Science 365, 145–150 (2019).

    Article  CAS  Google Scholar 

  70. Zhang, D. et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals. Adv. Mater. 33, 2100782 (2021).

    Article  CAS  Google Scholar 

  71. Zhu, R. et al. Biomimetic fabrication of janus fabric with asymmetric wettability for water purification and hydrophobic/hydrophilic patterned surfaces for fog harvesting. ACS Appl. Mater. Interf. 12, 50113–50125 (2020).

    Article  CAS  Google Scholar 

  72. Saetia, K. et al. Spray-layer-by-layer carbon nanotube/electrospun fiber electrodes for flexible chemiresistive sensor applications. Adv. Funct. Mater. 24, 492–502 (2014).

    Article  CAS  Google Scholar 

  73. Shuai, L. et al. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles. Nano Energy 78, 105389 (2020).

    Article  CAS  Google Scholar 

  74. Qian, J. et al. Highly stable, antiviral, antibacterial cotton textiles via molecular engineering. Nat. Nanotechnol. 18, 168–176 (2023).

    Article  CAS  Google Scholar 

  75. Kulpinski, P., Namyslak, M., Grzyb, T. & Lis, S. Luminescent cellulose fibers activated by Eu3+-doped nanoparticles. Cellulose 19, 1271–1278 (2012).

  76. Orelma, H. et al. Optical cellulose fiber made from regenerated cellulose and cellulose acetate for water sensor applications. Cellulose 27, 1543–1553 (2020).

    Article  CAS  Google Scholar 

  77. Yang, C. et al. Copper-coordinated cellulose ion conductors for solid-state batteries. Nature 598, 590–596 (2021).

    Article  Google Scholar 

  78. Yang, D. L., Faraz, F., Wang, J. X. & Radacsi, N. Combination of 3D printing and electrospinning techniques for biofabrication. Adv. Mater. Technol. 7, 2101309 (2022).

    Article  Google Scholar 

  79. Gantenbein, S. et al. Three-dimensional printing of mycelium hydrogels into living complex materials. Nat. Mater. 22, 128–134 (2022).

    Article  Google Scholar 

  80. SupplyDemand Mismatch Looms Large For Smart Clothing (Technical Textile, 2023); https://www.technicaltextile.net/articles/supply-demand-mismatch-looms-large-for-smart-clothing-9134

  81. Ju, N. & Lee, K.-H. Consumer resistance to innovation: smart clothing. Fash. Text. 7, 21 (2020).

    Article  Google Scholar 

  82. E-Textiles Market: Global Opportunity Analysis and Industry Forecast 2021-2031 (Allied Market Research, 2023); https://www.alliedmarketresearch.com/e-textile-market-A16100

  83. Survey: Consumer Sentiment on Sustainability in Fashion (McKinsey & Company, 2023); https://www.mckinsey.com/industries/retail/our-insights/survey-consumer-sentiment-on-sustainability-in-fashion

Download references

Acknowledgements

We thank J. Jur (from Advanced Functional Fabrics of America (AFFOA)), N. Khalili (from Inkbox) and other anonymous industrial experts and interviewees who provided their valuable opinions and insights for this Perspective.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Yan Shery Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jun Chen, Sung Kyu Park and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H.H., Pan, Y., Xu, L. et al. Sustainable electronic textiles towards scalable commercialization. Nat. Mater. 22, 1294–1303 (2023). https://doi.org/10.1038/s41563-023-01615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01615-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing