Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Sustainability considerations for organic electronic products

Abstract

The development of organic electronic applications has reached a critical point. While markets, including the Internet of Things, transparent solar and flexible displays, gain momentum, organic light-emitting diode displays lead the way, with a current market size of over $25 billion, helping to create the infrastructure and ecosystem for other applications to follow. It is imperative to design built-in sustainability into the materials selection, processing and device architectures of all of these emerging applications, and to close the loop for a circular approach. In this Perspective, we evaluate the status of embedded carbon in organic electronics, as well as options for more sustainable materials and manufacturing, including engineered recycling solutions that can be applied within the product architecture and at the end of life. This emerging industry has a responsibility to ensure a ‘cradle-to-cradle’ approach. We highlight that ease of dismantling and recycling needs to closely relate to the product lifetime, and that regeneration should be facilitated in product design. Materials choices should consider the environmental effects of synthesis, processing and end-product recycling as well as performance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A qualitative comparison of traditional and printed photovoltaics technologies.
Fig. 2: Sustainability goals and targets for key attributes of flexible electronics devices.

Similar content being viewed by others

References

  1. Organic PhotovoltaicsTruly Green Energy: Ultra-Low Carbon Footprint White Paper (Heliatek, 2020).

  2. Yuan, J. et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  3. Moser, M., Wadsworth, A., Gasparini, N. & McCulloch, I. Challenges to the success of commercial organic photovoltaic products. Adv. Energy Mater. 11, 2100056 (2021).

    Article  CAS  Google Scholar 

  4. Xiao, J. et al. Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv. Mater. 33, 2008158 (2021).

    Article  CAS  Google Scholar 

  5. Rahmanudin, A. et al. Organic semiconductors processed from synthesis-to-device in water. Adv. Sci. 7, 2002010 (2020).

    Article  CAS  Google Scholar 

  6. Saska, J. et al. Butenolide derivatives of biobased furans: sustainable synthetic dyes. Angew. Chem. Int. Ed. 58, 17293–17296 (2019).

    Article  CAS  Google Scholar 

  7. Bizzarri, C., Spuling, E., Knoll, D. M., Volz, D. & Bräse, S. Sustainable metal complexes for organic light-emitting diodes (OLEDs). Coord. Chem. Rev. 373, 49–82 (2018).

    Article  CAS  Google Scholar 

  8. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  9. Lin, Y. et al. A simple n-dopant derived from Diquat boosts the efficiency of organic solar cells to 18.3%. ACS Energy Lett. 5, 3663–3671 (2020).

    Article  CAS  Google Scholar 

  10. Service, R. F. Solar energy gets flexible. Science 378, 588–591 (2022).

    Article  CAS  Google Scholar 

  11. Riede, M., Spoltore, D. & Leo, K. Organic solar cells—the path to commercial success. Adv. Energy Mater. 11, 2002653 (2021).

    Article  CAS  Google Scholar 

  12. Alfantazi, A. M. & Moskalyk, R. R. Processing of indium: a review. Miner. Eng. 16, 687–694 (2003).

    Article  CAS  Google Scholar 

  13. Hu, L., Kim, H. S., Lee, J.-Y., Peumans, P. & Cui, Y. Scalable coating and properties of transparent, flexible, silver nanowire electrodes. ACS Nano 4, 2955–2963 (2010).

    Article  CAS  Google Scholar 

  14. Wang, X., Zhi, L. & Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

    Article  CAS  Google Scholar 

  15. Islam, A., Mukherjee, B., Pandey, K. K. & Keshri, A. K. Ultra-fast, chemical-free, mass production of high quality exfoliated graphene. ACS Nano 15, 1775–1784 (2021).

    Article  CAS  Google Scholar 

  16. Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  17. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  Google Scholar 

  18. Bihar, E. et al. Fully inkjet-printed, ultrathin and conformable organic photovoltaics as power source based on cross-linked PEDOT:PSS electrodes. Adv. Mater. Technol. 5, 2000226 (2020).

    Article  CAS  Google Scholar 

  19. Chirilă, A. et al. Highly efficient Cu(In,Ga)Se2 solar cells grown on flexible polymer films. Nat. Mater. 10, 857–861 (2011).

    Article  Google Scholar 

  20. Ohayon, D. & Inal, S. Organic bioelectronics: from functional materials to next-generation devices and power sources. Adv. Mater. 32, 2001439 (2020).

    Article  CAS  Google Scholar 

  21. Han, W. B., Lee, J. H., Shin, J.-W. & Hwang, S.-W. Advanced materials and systems for biodegradable, transient electronics. Adv. Mater. 32, 2002211 (2020).

    Article  CAS  Google Scholar 

  22. Moro, L. & Hauf, C. R. Large-scale manufacturing of polymer planarization layers. Inf. Disp. 37, 10–15 (2021).

    Google Scholar 

  23. Ren, X., Zou, Y., Fennimore, A., Hlaing, H. & Skulason, H. Development of advanced materials for printed OLED displays. SID Symp. Dig. Tech. Pap. 49, 280–282 (2018).

    Article  CAS  Google Scholar 

  24. Kang, J.-g, Koo, Y., Ha, J. & Lee, C. Recent developments in inkjet-printed OLEDs for high resolution, large area applications. SID Symp. Dig. Tech. Pap. 51, 591–594 (2020).

    Article  CAS  Google Scholar 

  25. Brown, A. R., Pomp, A., Hart, C. M. & de Leeuw, D. M. Logic gates made from polymer transistors and their use in ring oscillators. Science 270, 972–974 (1995).

    Article  CAS  Google Scholar 

  26. Sisk, S., Koh, J., Su, P. H. & Bowden, B. Corning LotusTM NXT Glass, Through Its Advantaged and Balanced Glass Attributes, Was Designed to Address the Challenges of Today’s LTPS-OLED Manufacturing Processes White Paper (Corning, 2016).

  27. TCL developed a 65″ 8K inkjet printed OLED TV display, as it gets ready for mass production in 2023. OLED-info www.oled-info.com/tcl-shows-65-8k-inkjet-printed-oled-tv-prototype (2022).

  28. Are you keen for a green screen? Electronics Weekly https://www.electronicsweekly.com/news/products/displays-2/keen-green-screen-2022-03/ (2022).

  29. Sondergaard, R., Hoesel, M., Angmo, D., Larsen-Olsen, T. T. & Krebs, F. C. Roll-to-roll fabrication of polymer solar cells. Mater. Today 15, 36–49 (2012).

    Article  CAS  Google Scholar 

  30. Qu, B. & Forrest, S. R. Continuous roll-to-roll fabrication of organic photovoltaic cells via interconnected high-vacuum and low-pressure organic vapor phase deposition systems. Appl. Phys. Lett. 113, 053302 (2018).

    Article  Google Scholar 

  31. Tajima, K. et al. Mass-producible slit coating for large-area electrochromic devices. Sol. Energy Mater. Sol. Cells 232, 111361 (2021).

    Article  CAS  Google Scholar 

  32. Fredrickson, G. H. et al. Ionic compatibilization of polymers. ACS Polym. Au 2, 299–312 (2022).

    Article  CAS  Google Scholar 

  33. Xie, C. et al. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 9, 5335 (2018).

    Article  CAS  Google Scholar 

  34. Bommes, L. et al. Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Prog. Photovolt. Res. Appl. 29, 1236–1251 (2021).

    Article  Google Scholar 

  35. Irimia-Vladu, M. et al. Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20, 4069–4076 (2010).

    Article  CAS  Google Scholar 

  36. Danninger, D., Pruckner, R., Holzinger, L., Koeppe, R. & Kaltenbrunner, M. MycelioTronics: fungal mycelium skin for sustainable electronics. Sci. Adv. 8, eadd7118 (2022).

    Article  CAS  Google Scholar 

  37. McDonough, W. & Braungart, M. Cradle to Cradle: Remaking the Way We Make Things (North Point Press, 2002).

    Google Scholar 

  38. Awasthi, A. K., Li, J., Koh, L. & Ogunseitan, O. A. Circular economy and electronic waste. Nat. Electron. 2, 86–89 (2019).

    Article  Google Scholar 

  39. Ogunseitan, O. A. et al. Biobased materials for sustainable printed circuit boards. Nat. Rev. Mater. 7, 749–750 (2022).

    Article  Google Scholar 

  40. Liu, K., Huang, S., Jin, Y. & Lam, J. C.-H. Teaching electrometallurgical recycling of metals from waste printed circuit boards via slurry electrolysis using benign chemicals. J. Chem. Educ. 100, 782–790 (2022).

    Article  Google Scholar 

  41. Borrelle, S. B. et al. Predicted growth in plastic waste exceeds efforts to mitigate plastic pollution. Science 369, 1515–1518 (2020).

    Article  CAS  Google Scholar 

  42. Tsang, M. P., Sonnemann, G. W. & Bassani, D. M. Life-cycle assessment of cradle-to-grave opportunities and environmental impacts of organic photovoltaic solar panels compared to conventional technologies. Sol. Energy Mater. Sol. Cells 156, 37–48 (2016).

    Article  CAS  Google Scholar 

  43. Välimäki, M. K. et al. Printed and hybrid integrated electronics using bio-based and recycled materials—increasing sustainability with greener materials and technologies. Int. J. Adv. Manuf. Technol. 111, 325–339 (2020).

    Article  Google Scholar 

  44. Sullivan, K. P. et al. Mixed plastics waste valorization through tandem chemical oxidation and biological funneling. Science 378, 207–211 (2022).

    Article  CAS  Google Scholar 

  45. Tullo, A. All in on plastics pyrolysis. CEN Glob. Enterp. 100, 22–28 (2022).

    Article  Google Scholar 

  46. Kadro, J. M. et al. Proof-of-concept for facile perovskite solar cell recycling. Energy Environ. Sci. 9, 3172–3179 (2016).

    Article  CAS  Google Scholar 

  47. Binek, A. et al. Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 8, 12881–12886 (2016).

    Article  CAS  Google Scholar 

  48. Chen, B. et al. Recycling lead and transparent conductors from perovskite solar modules. Nat. Commun. 12, 5859 (2021).

    Article  CAS  Google Scholar 

  49. Tian, X., Stranks, S. D. & You, F. Life cycle assessment of recycling strategies for perovskite photovoltaic modules. Nat. Sustain. 4, 821–829 (2021).

    Article  Google Scholar 

  50. Sudheshwar, A., Malinverno, N., Hischier, R., Nowack, B. & Som, C. The need for design-for-recycling of paper-based printed electronics—a prospective comparison with printed circuit boards. Resour. Conserv. Recycl. 189, 106757 (2023).

    Article  Google Scholar 

  51. Wiklund, J. et al. A review on printed electronics: fabrication methods, inks, substrates, applications and environmental impacts. J. Manuf. Mater. Process. 5, 89 (2021).

    CAS  Google Scholar 

  52. Martin, D. P. et al. Nanosilver conductive ink: a case study for evaluating the potential risk of nanotechnology under hypothetical use scenarios. Chemosphere 162, 222–227 (2016).

    Article  CAS  Google Scholar 

  53. Meloni, M., Souchet, F. & Sturges, D. Circular Consumer Electronics: An Initial Exploration (Ellen MacArthur Foundation, 2018).

  54. Onwubiko, A. et al. Fused electron deficient semiconducting polymers for air stable electron transport. Nat. Commun. 9, 416 (2018).

    Article  Google Scholar 

  55. Li, X. et al. Simplified synthetic routes for low cost and high photovoltaic performance n-type organic semiconductor acceptors. Nat. Commun. 10, 519 (2019).

    Article  CAS  Google Scholar 

  56. Martić, N. et al. Ag2Cu2O3 – a catalyst template material for selective electroreduction of CO to C2+ products. Energy Environ. Sci. 13, 2993–3006 (2020).

    Article  Google Scholar 

  57. Tomada, J., Dienel, T., Hampel, F., Fasel, R. & Amsharov, K. Combinatorial design of molecular seeds for chirality-controlled synthesis of single-walled carbon nanotubes. Nat. Commun. 10, 3278 (2019).

    Article  Google Scholar 

  58. Bronstein, H., Nielsen, C. B., Schroeder, B. C. & McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 4, 66–77 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I.M. acknowledges financial support from King Abdullah University of Science and Technology Office of Sponsored Research, CRG10; by the European Union Horizon 2020, grant agreement no. 952911; by BOOSTER, grant agreement no. 862474; by RoLA-FLEX; and grant agreement no. 101007084 from CITYSOLAR; as well as Engineering and Physical Sciences Research Council projects EP/T026219/1 and EP/W017091/1. M.C. acknowledges financial support from the US Department of Energy, Office of Basic Energy Sciences under grant no. DE-SC0016390. C.B. acknowledges support from FAU Solar. C.B.N. acknowledges financial support from the European Commission Horizon 2020 Future and Emerging Technologies (FET) project MITICS (964677). For the purpose of open access, the authors have applied a CC BY public copyright licence to any author accepted manuscript version arising from this submission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain McCulloch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks John Anthony and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCulloch, I., Chabinyc, M., Brabec, C. et al. Sustainability considerations for organic electronic products. Nat. Mater. 22, 1304–1310 (2023). https://doi.org/10.1038/s41563-023-01579-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01579-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing