Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spontaneous orbital polarization in the nematic phase of FeSe

Abstract

The origin of nematicity in FeSe remains a critical outstanding question towards understanding unconventional superconductivity in proximity to nematic order. To understand what drives the nematicity, it is essential to determine which electronic degree of freedom admits a spontaneous order parameter independent from the structural distortion. Here we use X-ray linear dichroism at the Fe K pre-edge to measure the anisotropy of the 3d orbital occupation as a function of in situ applied stress and temperature across the nematic transition. Along with using X-ray diffraction to precisely quantify the strain state, we reveal a lattice-independent, spontaneously ordered orbital polarization within the nematic phase, as well as an orbital polarizability that diverges as the transition is approached from above. These results provide strong evidence that spontaneous orbital polarization serves as the primary order parameter of the nematic phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strain apparatus and XLD spectroscopy in FeSe.
Fig. 2: Strain-dependent X-ray measurements in the nematic phase.
Fig. 3: Spontaneous orbital polarization across the nematic transition.
Fig. 4: Divergent orbital polarizability and orbital–transport correspondence.

Similar content being viewed by others

Data availability

Data associated with this paper are available on the Harvard Dataverse at https://doi.org/10.7910/DVN/SGZVX7.

References

  1. Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  2. Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    CAS  Google Scholar 

  3. Nandi, S. et al. Anomalous suppression of the orthorhombic lattice distortion in superconducting Ba(Fe1–xCox)2As2 single crystals. Phys. Rev. Lett. 104, 057006 (2010).

    CAS  Google Scholar 

  4. Pratt, D. K. et al. Coexistence of competing antiferromagnetic and superconducting phases in the underdoped Ba(Fe0.953Co0.047)2As2 compound using X-ray and neutron scattering techniques. Phys. Rev. Lett. 103, 087001 (2009).

    CAS  Google Scholar 

  5. Liu, D. et al. Orbital origin of extremely anisotropic superconducting gap in nematic phase of FeSe superconductor. Phys. Rev. X 8, 031033 (2018).

    CAS  Google Scholar 

  6. Chen, X., Maiti, S., Fernandes, R. M. & Hirschfeld, P. J. Nematicity and superconductivity: competition versus cooperation. Phys. Rev. B 102, 184512 (2020).

    CAS  Google Scholar 

  7. Wilkins, S. B. et al. Direct observation of orbital ordering in La0.5Sr1.5MnO4 using soft X-ray diffraction. Phys. Rev. Lett. 91, 167205 (2003).

    CAS  Google Scholar 

  8. Willers, T. et al. Correlation between ground state and orbital anisotropy in heavy fermion materials. Proc. Natl Acad. Sci. USA 112, 2384–2388 (2015).

    CAS  Google Scholar 

  9. Rosenberg, E. W., Chu, J. H., Ruff, J. P., Hristov, A. T. & Fisher, I. R. Divergence of the quadrupole-strain susceptibility of the electronic nematic system YbRu2Ge2. Proc. Natl Acad. Sci. USA 116, 7232–7237 (2019).

    CAS  Google Scholar 

  10. Li, J. et al. Spin-orbital-intertwined nematic state in FeSe. Phys. Rev. X 10, 011034 (2020).

    CAS  Google Scholar 

  11. Böhmer, A. E. et al. Lack of coupling between superconductivity and orthorhombic distortion in stoichiometric single-crystalline FeSe. Phys. Rev. B 87, 180505 (2013).

    Google Scholar 

  12. Baek, S. H. et al. Orbital-driven nematicity in FeSe. Nat. Mater. 14, 210–214 (2015).

    CAS  Google Scholar 

  13. Pfau, H. et al. Momentum dependence of the nematic order parameter in iron-based superconductors. Phys. Rev. Lett. 123, 066402 (2019).

    CAS  Google Scholar 

  14. Yi, M. et al. Nematic energy scale and the missing electron pocket in FeSe. Phys. Rev. X 9, 041049 (2019).

    CAS  Google Scholar 

  15. Shimojima, T. et al. Lifting of xz/yz orbital degeneracy at the structural transition in detwinned FeSe. Phys. Rev. B 90, 121111 (2014).

    Google Scholar 

  16. Watson, M. D. et al. Emergence of the nematic electronic state in FeSe. Phys. Rev. B Condens. Matter Mater. Phys. 91, 155106 (2015).

    Google Scholar 

  17. Wang, Q. et al. Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe. Nat. Mater. 15, 159–163 (2016).

    CAS  Google Scholar 

  18. Chen, T. et al. Anisotropic spin fluctuations in detwinned FeSe. Nat. Mater. 18, 709–716 (2019).

    CAS  Google Scholar 

  19. Massat, P. et al. Charge-induced nematicity in FeSe. Proc. Natl Acad. Sci. USA 113, 9177–9181 (2016).

    CAS  Google Scholar 

  20. Lu, X. et al. Spin-excitation anisotropy in the nematic state of detwinned FeSe. Nat. Phys. 18, 806–812 (2022).

    CAS  Google Scholar 

  21. Hosoi, S. et al. Nematic quantum critical point without magnetism in FeSe1–xSx superconductors. Proc. Natl Acad. Sci. USA 113, 8139–8143 (2016).

    CAS  Google Scholar 

  22. Tanatar, M. A. et al. Origin of the resistivity anisotropy in the nematic phase of FeSe. Phys. Rev. Lett. 117, 127001 (2016).

    CAS  Google Scholar 

  23. Bartlett, J. M. et al. Relationship between transport anisotropy and nematicity in FeSe. Phys. Rev. X 11, 021038 (2021).

    CAS  Google Scholar 

  24. Ghini, M. et al. Strain tuning of nematicity and superconductivity in single crystals of FeSe. Phys. Rev. B 103, 205139 (2021).

    CAS  Google Scholar 

  25. Chinotti, M., Pal, A., Degiorgi, L., Böhmer, A. E. & Canfield, P. C. Ingredients for the electronic nematic phase in FeSe revealed by its anisotropic optical response. Phys. Rev. B 98, 094506 (2018).

    CAS  Google Scholar 

  26. Schütt, M., Schmalian, J. & Fernandes, R. M. Origin of DC and AC conductivity anisotropy in iron-based superconductors: scattering rate versus spectral weight effects. Phys. Rev. B 94, 075111 (2016).

    Google Scholar 

  27. Baek, S. H. et al. Separate tuning of nematicity and spin fluctuations to unravel the origin of superconductivity in FeSe. npj Quantum Mater. 5, 8 (2020).

    CAS  Google Scholar 

  28. Huh, S. S. et al. Absence of Y-pocket in 1-Fe Brillouin zone and reversed orbital occupation imbalance in FeSe. Commun. Phys. 3, 52 (2020).

    CAS  Google Scholar 

  29. Cai, C. et al. Momentum-resolved measurement of electronic nematic susceptibility in the FeSe0.9S0.1 superconductor. Phys. Rev. B 101, 180501 (2020).

    CAS  Google Scholar 

  30. Fernandes, R. M., Böhmer, A. E., Meingast, C. & Schmalian, J. Scaling between magnetic and lattice fluctuations in iron pnictide superconductors. Phys. Rev. Lett. 111, 137001 (2013).

    Google Scholar 

  31. Park, J. et al. Rigid platform for applying large tunable strains to mechanically delicate samples. Rev. Sci. Instrum. 91, 083902 (2020).

    CAS  Google Scholar 

  32. Lebert, B. W., Balédent, V., Toulemonde, P., Ablett, J. M. & Rueff, J. P. Emergent high-spin state above 7 GPa in superconducting FeSe. Phys. Rev. B 97, 180503 (2018).

    CAS  Google Scholar 

  33. Joseph, B. et al. A study of the electronic structure of FeSe1–xTex chalcogenides by Fe and Se K-edge X-ray absorption near edge structure measurements. J. Phys. Condens. Matter 22, 485702 (2010).

    CAS  Google Scholar 

  34. Simonelli, L. et al. Electronic properties of FeSe1–xTex probed by X-ray emission and absorption spectroscopy. J. Phys. Condens. Matter 24, 415501 (2012).

    CAS  Google Scholar 

  35. De Groot, F., Vankó, G. & Glatzel, P. The 1s X-ray absorption pre-edge structures in transition metal oxides. J. Phys. Condens. Matter 21, 104207 (2009).

    Google Scholar 

  36. Modrow, H., Bucher, S., Rehr, J. J. & Ankudinov, A. L. Calculation and interpretation of K-shell X-ray absorption near-edge structure of transition metal oxides. Phys. Rev. B 67, 035123 (2003).

    Google Scholar 

  37. de Figueiredo, A. G. et al. Orbital localization and the role of the Fe and As 4p orbitals in BaFe2As2 probed by XANES. Phys. Rev. B 105, 045130 (2022).

    Google Scholar 

  38. Chen, J. M. et al. Electronic structure and characteristics of Fe 3d valence states of Fe1.01Se superconductors under pressure probed by X-ray absorption spectroscopy and resonant X-ray emission spectroscopy. J. Chem. Phys. 137, 244702 (2012).

    CAS  Google Scholar 

  39. Yamamoto, T. Assignment of pre-edge peaks in K-edge X-ray absorption spectra of 3d transition metal compounds: electric dipole or quadrupole? X-ray Spectrom. 37, 572–584 (2008).

    CAS  Google Scholar 

  40. Lee, C. C., Yin, W. G. & Ku, W. Ferro-orbital order and strong magnetic anisotropy in the parent compounds of iron-pnictide superconductors. Phys. Rev. Lett. 103, 267001 (2009).

    Google Scholar 

  41. Sanchez, J. J. et al. The transport–structural correspondence across the nematic phase transition probed by elasto X-ray diffraction. Nat. Mater. 20, 1519–1524 (2021).

    CAS  Google Scholar 

  42. Chen, C. C. et al. Orbital order and spontaneous orthorhombicity in iron pnictides. Phys. Rev. B 82, 100504 (2010).

    Google Scholar 

  43. Koch, R. J. et al. Room temperature local nematicity in FeSe superconductor. Phys. Rev. B 100, 020501 (2019).

    CAS  Google Scholar 

  44. Ishida, K. et al. Pure nematic quantum critical point accompanied by a superconducting dome. Proc. Natl Acad. Sci. USA 119, e2110501119 (2022).

    CAS  Google Scholar 

  45. Fanfarillo, L. et al. Orbital-dependent Fermi surface shrinking as a fingerprint of nematicity in FeSe. Phys. Rev. B 94, 155138 (2016).

    Google Scholar 

  46. Onari, S. & Kontani, H. In-plane anisotropy of transport coefficients in electronic nematic states: universal origin of nematicity in Fe-based superconductors. Phys. Rev. B 96, 094527 (2017).

    Google Scholar 

  47. Fernandes, R. M., Abrahams, E. & Schmalian, J. Anisotropic in-plane resistivity in the nematic phase of the iron pnictides. Phys. Rev. Lett. 107, 217002 (2011).

    Google Scholar 

  48. He, M. et al. Evidence for short-range magnetic order in the nematic phase of FeSe from anisotropic in-plane magnetostriction and susceptibility measurements. Phys. Rev. B 97, 104107 (2018).

    CAS  Google Scholar 

  49. Rhodes, L. C., Watson, M. D., Haghighirad, A. A., Evtushinsky, D. V. & Kim, T. K. Revealing the single electron pocket of FeSe in a single orthorhombic domain. Phys. Rev. B 101, 235128 (2020).

    CAS  Google Scholar 

  50. Udina, M., Grilli, M., Benfatto, L. & Chubukov, A. V. Raman response in the nematic phase of FeSe. Phys. Rev. Lett. 124, 197602 (2020).

    CAS  Google Scholar 

  51. Sun, J. P. et al. High-Tc superconductivity in FeSe at high pressure: dominant hole carriers and enhanced spin fluctuations. Phys. Rev. Lett. 118, 147004 (2017).

    CAS  Google Scholar 

  52. Wang, Q. et al. Magnetic ground state of FeSe. Nat. Commun. 7, 12182 (2016).

    CAS  Google Scholar 

  53. Sun, J. et al. Dome-shaped magnetic order competing with high-temperature superconductivity at high pressures in FeSe. Nat. Commun. 7, 12146 (2016).

    CAS  Google Scholar 

  54. Hanaguri, T. et al. Two distinct superconducting pairing states divided by the nematic end point in FeSe1–xSx. Sci. Adv. 4, eaar6419 (2018).

    Google Scholar 

Download references

Acknowledgements

We thank R. Fernandes, M. Norman, J. Analytis, M. Le Tacon, J. Pelliciari, E. Ergeçen, Q. Jiang, P. Malinowski, M. Bachmann, M. Yi and H. Pfau for discussions. We thank L. G. Pimenta Martins and Y. Lee for assistance with preliminary X-ray experiments. Work at MIT (C.A.O., J.J.S., Q.S. and R.C.) is supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award Number DE-SC0019126 (resonant X-ray spectroscopy and diffraction measurements, and sample growth), by the Air Force Office of Scientific Research Young Investigator Program under grant FA9550-19-1-0063 (strain set-up development and transport measurements), and by the National Science Foundation under grant no. 1751739 (optical dichroism). The work performed at the Advanced Photon Source was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. Sample preparation was performed in part at HPCAT (Sector 16) at the Advanced Photon Source, Argonne National Laboratory. J.J.S. acknowledges the support of the National Science Foundation MPS-Ascend Postdoctoral Research Fellowship under award no. 2138167. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.A.O., J.J.S., G.F., Y.C., J.-W.K. and P.J.R. conceived the project and performed all X-ray measurements. Q.S. grew the samples. C.A.O. and J.J.S. prepared the samples for strain measurements, performed the optical birefringence measurements, analysed the data and wrote the manuscript. All authors contributed to the discussion of the results and commented on the manuscript. R.C. supervised the project.

Corresponding author

Correspondence to Riccardo Comin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Discussion and refs. 1–16.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Occhialini, C.A., Sanchez, J.J., Song, Q. et al. Spontaneous orbital polarization in the nematic phase of FeSe. Nat. Mater. 22, 985–991 (2023). https://doi.org/10.1038/s41563-023-01585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01585-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing