Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2

Abstract

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such ‘Ising-nematic’ systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a \(Z_3\) or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photo-thermal modulated birefringence measurements.
Fig. 2: First-order phase transitions at surface and bulk.
Fig. 3: Polar plots and birefringence map.
Fig. 4: Crystal structure and nematic order.
Fig. 5: Strain tuning of birefringent domains.

Similar content being viewed by others

Data availability

The data represented in Figs. 1b,c, 2a,b,c, 3a,b and 5b,c,e,f are provided with the paper as source data. All other data that support results in this Article are available from the corresponding author upon reasonable request.

References

  1. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  2. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  3. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  4. Bodnar, S. Y. et al. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun. 9, 348 (2018).

    Article  Google Scholar 

  5. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  Google Scholar 

  6. Saidl, V. et al. Optical determination of the Néel vector in a CuMnAs thin-film antiferromagnet. Nat. Photon 11, 91–96 (2017).

    Article  Google Scholar 

  7. Kriegner, D. et al. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe. Nat. Commun. 7, 11623 (2016).

    Article  CAS  Google Scholar 

  8. Kriegner, D. et al. Magnetic anisotropy in antiferromagnetic hexagonal MnTe. Phys. Rev. B 96, 214418 (2017).

    Article  Google Scholar 

  9. Železný, J. et al. Relativistic Néel-order fields induced by electrical current in antiferromagnets. Phys. Rev. Lett. 113, 157201 (2014).

    Article  Google Scholar 

  10. Železný, J. et al. Spin-orbit torques in locally and globally noncentrosymmetric crystals: antiferromagnets and ferromagnets. Phys. Rev. B 95, 014403 (2017).

    Article  Google Scholar 

  11. Nair, N. L. et al. Electrical switching in a magnetically intercalated transition metal dichalcogenide. Nat. Mater. 19, 153–157 (2020).

    Article  CAS  Google Scholar 

  12. van Laar, B., Rietveld, H. M. & Ijdo, D. J. W. Magnetic and crystallographic structures of MexNbS2 and MexTaS2. J. Solid State Chem. 3, 154–160 (1971).

    Article  Google Scholar 

  13. Gorochov, O., Blanc-soreau, A. L., Rouxel, J., Imbert, P. & Jehanno, G. Transport properties, magnetic susceptibility and Mössbauer spectroscopy of Fe0.25NbS2 and Fe0.33NbS2. Philos. Mag. B 43, 621–634 (1981).

    Article  CAS  Google Scholar 

  14. Yamamura, Y. et al. Heat capacity and phase transition of FexNbS2 at low temperature. J. Alloy. Compd. 383, 338–341 (2004).

    Article  CAS  Google Scholar 

  15. Chu, J.-H. et al. In-plane resistivity anisotropy in an underdoped iron arsenide superconductor. Science 329, 824–826 (2010).

    Article  CAS  Google Scholar 

  16. Johnston, D. C. The puzzle of high temperature superconductivity in layered iron pnictides and chalcogenides. Adv. Phys. 59, 803–1061 (2010).

    Article  CAS  Google Scholar 

  17. Paglione, J. & Greene, R. L. High-temperature superconductivity in iron-based materials. Nat. Phys. 6, 645–658 (2010).

    Article  CAS  Google Scholar 

  18. Fernandes, R. M., Chubukov, A. V. & Schmalian, J. What drives nematic order in iron-based superconductors? Nat. Phys. 10, 97–104 (2014).

    Article  CAS  Google Scholar 

  19. Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

    Article  CAS  Google Scholar 

  20. Fernandes, R. M., Orth, P. P. & Schmalian, J. Intertwined vestigial order in quantum materials: nematicity and beyond. Annu. Rev. Condens. Matter Phys. 10, 133–154 (2019).

    Article  Google Scholar 

  21. Hecker, M. & Schmalian, J. Vestigial nematic order and superconductivity in the doped topological insulator CuxBi2Se3. npj Quantum Mater. 3, 26 (2018).

    Article  Google Scholar 

  22. Fan, S. et al. Electronic chirality in the metallic ferromagnet Fe1/3TaS2. Phys. Rev. B 96, 205119 (2017).

    Article  Google Scholar 

  23. Wannier, G. H. Antiferromagnetism. Triangular Ising Net. Phys. Rev. 79, 357–364 (1950).

    Google Scholar 

  24. Korshunov, S. E. Nature of phase transitions in the striped phase of a triangular-lattice Ising antiferromagnet. Phys. Rev. B 72, 144417 (2005).

    Article  Google Scholar 

  25. Smerald, A., Korshunov, S. & Mila, F. Topological aspects of symmetry breaking in triangular-lattice ising antiferromagnets. Phys. Rev. Lett. 116, 197201 (2016).

    Article  Google Scholar 

  26. Friend, R. H., Beal, A. R. & Yoffe, A. D. Electrical and magnetic properties of some first row transition metal intercalates of niobium disulphide. Philos. Mag. A 35, 1269–1287 (1977).

    Article  CAS  Google Scholar 

  27. Parkin, S. S. P. & Friend, R. H. 3d transition-metal intercalates of the niobium and tantalum dichalcogenides. I. Magnetic properties. Philos. Mag. B 41, 65–93 (1980).

    Article  CAS  Google Scholar 

  28. Horibe, Y. et al. Color theorems, chiral domain topology, and magnetic properties of Fe(x)TaS2. J. Am. Chem. Soc. 136, 8368–8373 (2014).

    Article  CAS  Google Scholar 

  29. Doyle, S. et al. Tunable giant exchange bias in an intercalated transition metal dichalcogenide. Preprint at: https://arxiv.org/abs/1904.05872 (2019).

  30. Straley, J. P. & Fisher, M. E. Three-state Potts model and anomalous tricritical points. J. Phys. A 6, 1310–1326 (1973).

    Article  Google Scholar 

  31. Simpson, A. M. & Wolfs, W. Thermal expansion and piezoelectric response of PZT Channel 5800 for use in low‐temperature scanning tunneling microscope designs. Rev. Sci. Instrum. 58, 2193–2195 (1987).

    Article  CAS  Google Scholar 

  32. Chu, J.-H., Kuo, H.-H., Analytis, J. G. & Fisher, I. R. Divergent nematic susceptibility in an iron arsenide superconductor. Science 337, 710–712 (2012).

    Article  CAS  Google Scholar 

  33. Hicks, C. W., Barber, M. E., Edkins, S. D., Brodsky, D. O. & Mackenzie, A. P. Piezoelectric-based apparatus for strain tuning. Rev. Sci. Instrum. 85, 065003 (2014).

    Article  Google Scholar 

  34. Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    Article  CAS  Google Scholar 

  35. Sapozhnik, A. A. et al. Direct imaging of antiferromagnetic domains in Mn2Au manipulated by high magnetic fields. Phys. Rev. B 97, 134429 (2018).

    Article  CAS  Google Scholar 

  36. Bodnar, S. Y. et al. Imaging of current induced Néel vector switching in antiferromagnetic Mn2Au. Phys. Rev. B 99, 140409 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. H. Lee and J. E. Moore for useful discussions and N. Tamura for support at the Advanced Light Source. Optical measurements were performed at the Lawrence Berkeley National Laboratory in the Quantum Materials programme supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, of the US Department of Energy under contract no. DE-AC02- 05CH11231. A.L. and J.O. received support for optical measurements from the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant no. GBMF4537 to J.O. at University of California, Berkeley. Work by J.G.A., E.M., C.J. and S.D. was supported as part of the Center for Novel Pathways to Quantum Coherence in Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences. Synthesis of Fe1/3NbS2 was supported by Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under contract no. DE-AC02-05CH11231. J.G.A. and N.L.N. received support from the Gordon and Betty Moore Foundation’s EPiQS Initiative grant no. GBMF9067 to J.G.A. at University of California, Berkeley. R.M.F. was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, under award DE-SC0012336 and, during completion of the work, under award DE‐SC0020045. X-ray diffraction to register crystal orientation was carried out at beamline 12.3.2 at the Advanced Light Source, which is a Department of Energy User Facility, under contract no. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

A.L. and C.L. performed and contributed equally to the birefringence microscopy measurements and data analysis. C.J., S.D. and E.M. grew and characterized the crystals. E.M., N.L.N. and J.G.A. discovered the switching effect that motivated this project. J.W.F.V. and R.M.F. developed the theoretical model. W.C. performed the simulation of depth profiling. D.R. assisted with optical measurements. J.O., A.L., C.L., J.W.F.V. and R.M.F. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Joseph Orenstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7.

Source data

Source Data Fig. 1

Source data for Fig. 1b,c

Source Data Fig. 2

Source data for Fig. 2a,b,c

Source Data Fig. 3

Source data for Fig. 3a,b

Source Data Fig. 5

Source data for Fig. 5b,c,e,f

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Little, A., Lee, C., John, C. et al. Three-state nematicity in the triangular lattice antiferromagnet Fe1/3NbS2. Nat. Mater. 19, 1062–1067 (2020). https://doi.org/10.1038/s41563-020-0681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0681-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing