Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Group-III nitride heteroepitaxial films approaching bulk-class quality

Abstract

III-nitride wide bandgap semiconductors are promising materials for modern optoelectronics and electronics. Their application has progressed greatly thanks to the continuous quality improvements of heteroepitaxial films grown on large-lattice-mismatched foreign substrates. But compared with bulk single crystals, there is still tremendous room for the further improvement of the material quality. Here we show a paradigm to achieve high-quality III-nitride heteroepitaxial films by the controllable discretization and coalescence of columns. By adopting nano-patterned AlN/sapphire templates with regular hexagonal holes, discrete AlN columns coalesce with uniform out-of-plane and in-plane orientations guaranteed by sapphire nitridation pretreatment and the ordered lateral growth of cleavage facets, which efficiently suppresses the regeneration of threading dislocations during coalescence. The density of dislocation etch pits in the AlN heteroepitaxial film reaches 3.3 × 104 cm−2, close to the present available AlN bulk single crystals. This study facilitates the growth of bulk-class quality III-nitride films featuring low cost and scalability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of AlN growth on NPATs.
Fig. 2: Orientation control during AlN coalescence on NPATs and NPSSs.
Fig. 3: Crystalline quality of AlN on NPATs.
Fig. 4: Performance of DUV-LEDs fabricated on NPATs.

Similar content being viewed by others

Data availability

Data shown in the main text have been made available through Figshare (https://doi.org/10.6084/m9.figshare.22714921). Data are also available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Nakamura, S. The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes. Science 281, 956–961 (1998).

    Article  CAS  Google Scholar 

  2. Kneissl, M., Seong, T.-Y., Han, J. & Amano, H. The emergence and prospects of deep-ultraviolet light-emitting diode technologies. Nat. Photon. 13, 233–244 (2019).

    Article  CAS  Google Scholar 

  3. Khan, M. A., Bhattarai, A., Kuznia, J. N. & Olson, D. T. High electron mobility transistor based on a GaN-AlxGa1−xN heterojunction. Appl. Phys. Lett. 63, 1214–1215 (1993).

    Article  CAS  Google Scholar 

  4. Chen, K. J. et al. GaN-on-Si power technology: devices and applications. IEEE Trans. Electron. Devices 64, 779–795 (2017).

    Article  Google Scholar 

  5. Mishra, U. K., Shen, L., Kazior, T. E. & Wu, Y.-F. GaN-based RF power devices and amplifiers. Proc. IEEE 96, 287–305 (2008).

    Article  CAS  Google Scholar 

  6. Ban, K. et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 4, 052101 (2011).

    Article  Google Scholar 

  7. Look, D. C. & Sizelove, J. R. Dislocation scattering in GaN. Phys. Rev. Lett. 82, 1237–1240 (1999).

    Article  CAS  Google Scholar 

  8. Jena, D., Gossard, A. C. & Mishra, U. K. Dislocation scattering in a two-dimensional electron gas. Appl. Phys. Lett. 76, 1707–1709 (2000).

    Article  CAS  Google Scholar 

  9. Brazel, E. G., Chin, M. A. & Narayanamurti, V. Direct observation of localized high current densities in GaN films. Appl. Phys. Lett. 74, 2367–2369 (1999).

    Article  CAS  Google Scholar 

  10. Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AIN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).

    Article  CAS  Google Scholar 

  11. Nakamura, S. GaN growth using GaN buffer layer. Jpn. J. Appl. Phys. 30, L1705–L1707 (1991).

    Article  Google Scholar 

  12. Wu, X. H. et al. Morphological and structural transitions in GaN films grown on sapphire by metal-organic chemical vapor deposition. Jpn. J. Appl. Phys. 35, L1648–L1651 (1996).

    Article  CAS  Google Scholar 

  13. Vennéguès, P., Beaumont, B., Haffouz, S., Vaille, M. & Gibart, P. Influence of in situ sapphire surface preparation and carrier gas on the growth mode of GaN in MOVPE. J. Cryst. Growth 187, 167–177 (1998).

    Article  Google Scholar 

  14. Sun, X. et al. In situ observation of two-step growth of AlN on sapphire using high-temperature metal–organic chemical vapour deposition. CrystEngComm 15, 6066–6073 (2013).

    Article  CAS  Google Scholar 

  15. Wang, J. et al. High quality AlN epilayers grown on nitrided sapphire by metal organic chemical vapor deposition. Sci. Rep. 7, 42747 (2017).

    Article  CAS  Google Scholar 

  16. Vennéguès, P., Beaumont, B., Bousquet, V., Vaille, M. & Gibart, P. Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods. J. Appl. Phys. 87, 4175–4181 (2000).

    Article  Google Scholar 

  17. Zhang, L. et al. High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography. Sci. Rep. 6, 35934 (2016).

    Article  CAS  Google Scholar 

  18. Xie, N. et al. Period size effect induced crystalline quality improvement of AlN on a nano-patterned sapphire substrate. Jpn. J. Appl. Phys. 58, 100912 (2019).

    Article  CAS  Google Scholar 

  19. Taniyasu, Y., Kasu, M. & Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).

    Article  CAS  Google Scholar 

  20. Li, D., Jiang, K., Sun, X. & Guo, C. AlGaN photonics: recent advances in materials and ultraviolet devices. Adv. Opt. Photon. 10, 43–110 (2018).

    Article  CAS  Google Scholar 

  21. Chaudhuri, R. et al. A polarization-induced 2D hole gas in undoped gallium nitride quantum wells. Science 365, 1454–1457 (2019).

    Article  CAS  Google Scholar 

  22. Baca, A. G. et al. An AlN/Al0.85Ga0.15N high electron mobility transistor. Appl. Phys. Lett. 109, 033509 (2016).

    Article  Google Scholar 

  23. Ponce, F. A. Defects and interfaces in GaN epitaxy. MRS Bull. 22, 51–57 (1997).

    Article  CAS  Google Scholar 

  24. Le, B. H. et al. Controlled coalescence of AlGaN nanowire arrays: an architecture for nearly dislocation-free planar ultraviolet photonic device applications. Adv. Mater. 28, 8446–8454 (2016).

    Article  CAS  Google Scholar 

  25. Dobrovinskaya, E. R., Lytvynov, L. A. & Pishchik, V. Sapphire: Material, Manufacturing, Applications 55–58 (Springer, 2009).

  26. Liu, C.-M., Chen, J.-C., Huang, Y.-C. & Hsieh, H.-L. The morphology of etch pits on a sapphire surface. J. Phys. Chem. Solids 69, 572–575 (2008).

    Article  CAS  Google Scholar 

  27. Zhang, L. et al. Tridimensional morphology and kinetics of etch pit on the {0001} plane of sapphire crystal. J. Solid State Chem. 192, 60–67 (2012).

    Article  CAS  Google Scholar 

  28. Dong, P. et al. 282-nm AlGaN-based deep ultraviolet light-emitting diodes with improved performance on nano-patterned sapphire substrates. Appl. Phys. Lett. 102, 241113 (2013).

    Article  Google Scholar 

  29. Hagedorn, S., Knauer, A., Mogilatenko, A., Richter, E. & Weyers, M. AlN growth on nano-patterned sapphire: a route for cost efficient pseudo substrates for deep UV LEDs. Phys. Status Solidi A 213, 3178–3185 (2016).

    Article  CAS  Google Scholar 

  30. Nersisyan, H. H. et al. Experimental growth of new 6‑fold symmetry patterned microcrystals of AlN: equilibrium structures and growth mechanism. Cryst. Growth Des. 16, 5305–5311 (2016).

    Article  CAS  Google Scholar 

  31. Hiramatsu, K. et al. Recent progress in selective area growth and epitaxial lateral overgrowth of III-nitrides: effects of reactor pressure in MOVPE growth. Phys. Status Solidi A 176, 535–543 (1999).

    Article  CAS  Google Scholar 

  32. Sheldon, B. W. et al. Steady-state tensile stresses during the growth of polycrystalline films. Acta Mater. 55, 4973–4982 (2007).

    Article  CAS  Google Scholar 

  33. Sun, Q., Yerino, C. D., Leung, B., Han, J. & Coltrin, M. E. Understanding and controlling heteroepitaxy with the kinetic Wulff plot: a case study with GaN. J. Appl. Phys. 110, 053517 (2011).

    Article  Google Scholar 

  34. Floro, J. A., Chason, E., Cammarata, R. C. & Srolovitz, D. J. Physical origins of intrinsic stresses in Volmer–Weber thin films. MRS Bull. 27, 19–25 (2002).

    Article  CAS  Google Scholar 

  35. Xie, N. et al. Stress evolution in AlN growth on nano-patterned sapphire substrates. Appl. Phys. Express 13, 015504 (2020).

    Article  CAS  Google Scholar 

  36. Zhuang, D., Edgar, J. H., Strojek, B., Chaudhuri, J. & Rek, Z. Defect-selective etching of bulk AlN single crystals in molten KOH/NaOH eutectic alloy. J. Cryst. Growth 262, 89–94 (2004).

    Article  CAS  Google Scholar 

  37. Bickermann, M. et al. Wet KOH etching of freestanding AlN single crystals. J. Cryst. Growth 300, 299–307 (2007).

    Article  CAS  Google Scholar 

  38. Hartmann, C. et al. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn. J. Appl. Phys. 52, 08JA06 (2013).

    Article  Google Scholar 

  39. Fu, D. et al. Toward Φ56 mm Al-polar AlN single crystals grown by the homoepitaxial PVT method. Cryst. Growth Des. 22, 3462–3470 (2022).

    Article  CAS  Google Scholar 

  40. Davydov, V. Y. et al. Phonon dispersion and Raman scattering in hexagonal GaN and AlN. Phys. Rev. B 58, 12899–12907 (1998).

    Article  CAS  Google Scholar 

  41. Zollner, C. J., DenBaars, S. P., Speck, J. S. & Nakamura, S. Germicidal ultraviolet LEDs: a review of applications and semiconductor technologies. Semicond. Sci. Technol. 36, 123001 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2022YFB3605100 to J.W.), the National Natural Science Foundation of China (62234001 and 61927806 to B.S.; 61974002 and 62135013 to F.X.), the Key-Area Research and Development Program of Guangdong Province (2020B010172001 to B.S.) and the Major Scientific and Technological Innovation Project (MSTIP) of Shandong Province (2019JZZY010209 to F.X.).

Author information

Authors and Affiliations

Authors

Contributions

J.W., N.X. and F.X. conceived the experiments. J.W., N.X. and L.Z. grew the samples and performed relevant measurements. F.X., X.Y., N.T., X.W., W.G. and B.S. provided support in the measurement and analysis. J.L. performed device fabrication under X.K.’s and Z.Q.’s supervision. J.W. wrote the manuscript with the assistance of F.X., W.G. and B.S. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Fujun Xu or Bo Shen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xiaohang Li, Steven DenBaars and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20.

Source data

Source Data Fig. 1

XRD φ-scan of AlN template.

Source Data Fig. 2

Convergent beam electron diffraction cross-correlation analyses.

Source Data Fig. 3

Transmission spectrum and Raman shift of AlN on NPATs.

Source Data Fig. 4

Performance of DUV-LEDs fabricated on NPATs.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xie, N., Xu, F. et al. Group-III nitride heteroepitaxial films approaching bulk-class quality. Nat. Mater. 22, 853–859 (2023). https://doi.org/10.1038/s41563-023-01573-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01573-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing