Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Single-crystalline van der Waals layered dielectric with high dielectric constant

Abstract

The scaling of silicon-based transistors at sub-ten-nanometre technology nodes faces challenges such as interface imperfection and gate current leakage for an ultrathin silicon channel1,2. For next-generation nanoelectronics, high-mobility two-dimensional (2D) layered semiconductors with an atomic thickness and dangling-bond-free surfaces are expected as channel materials to achieve smaller channel sizes, less interfacial scattering and more efficient gate-field penetration1,2. However, further progress towards 2D electronics is hindered by factors such as the lack of a high dielectric constant (κ) dielectric with an atomically flat and dangling-bond-free surface3,4. Here, we report a facile synthesis of a single-crystalline high-κ (κ of roughly 16.5) van der Waals layered dielectric Bi2SeO5. The centimetre-scale single crystal of Bi2SeO5 can be efficiently exfoliated to an atomically flat nanosheet as large as 250 × 200 μm2 and as thin as monolayer. With these Bi2SeO5 nanosheets as dielectric and encapsulation layers, 2D materials such as Bi2O2Se, MoS2 and graphene show improved electronic performances. For example, in 2D Bi2O2Se, the quantum Hall effect is observed and the carrier mobility reaches 470,000 cm2 V−1 s−1 at 1.8 K. Our finding expands the realm of dielectric and opens up a new possibility for lowering the gate voltage and power consumption in 2D electronics and integrated circuits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and characterization of vdW layered Bi2SeO5 single crystals.
Fig. 2: Exfoliation and characterization of vdW layered Bi2SeO5 nanosheets.
Fig. 3: Dielectric properties of vdW layered Bi2SeO5.
Fig. 4: Transport properties of 2D Bi2O2Se encapsulated with Bi2SeO5 nanosheets.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

All computational data are presented in the paper.

References

  1. Liu, Y., Duan, X., Shin, H. J., Park, S. & Duan, X. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  Google Scholar 

  2. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Article  CAS  Google Scholar 

  3. Kingon, A. I., Maria, J.-P. & Streiffer, S. K. Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406, 1032–1038 (2000).

    Article  CAS  Google Scholar 

  4. Illarionov, Y. Y., Knobloch, T., Jech, M., Lanza, M. & Grasser, T. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Article  CAS  Google Scholar 

  5. Wen, C. et al. Dielectric properties of ultrathin CaF2 ionic crystals. Adv. Mater. 32, 2002525 (2020).

    Article  CAS  Google Scholar 

  6. Rhodes, D., Chae, S. H., Ribeiro-Palau, R. & Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 18, 541–549 (2019).

    Article  CAS  Google Scholar 

  7. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  8. Xue, J. et al. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 10, 282–285 (2011).

    Article  CAS  Google Scholar 

  9. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  10. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  Google Scholar 

  11. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    Article  CAS  Google Scholar 

  12. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  13. Tan, C., Adinehloo, D., Hone, J. & Perebeinos, V. Phonon-limited mobility in h-BN encapsulated AB-stacked bilayer graphene. Phys. Rev. Lett. 128, 206602 (2022).

    Article  CAS  Google Scholar 

  14. Li, L. et al. Quantum Hall effect in black phosphorus two-dimensional electron system. Nat. Nanotechnol. 11, 593–597 (2016).

    Article  CAS  Google Scholar 

  15. Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2016).

    Article  Google Scholar 

  16. Benyamini, A. et al. Fragility of the dissipationless state in clean two-dimensional superconductors. Nat. Phys. 15, 947–953 (2019).

    Article  CAS  Google Scholar 

  17. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  CAS  Google Scholar 

  18. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  19. Holler, B. A., Crowley, K., Berger, M. H. & Gao, X. P. A. 2D semiconductor transistors with van der Waals oxide MoO3 as integrated high‐κ gate dielectric. Adv. Electron. Mater. 6, 2000635 (2020).

    Article  CAS  Google Scholar 

  20. de Castro, I. A. et al. Molybdenum oxides—from fundamentals to functionality. Adv. Mater. 29, 1701619 (2017).

    Article  Google Scholar 

  21. Zheng, H. et al. Nanostructured tungsten oxide—properties, synthesis, and applications. Adv. Funct. Mater. 21, 2175–2196 (2011).

    Article  CAS  Google Scholar 

  22. Rademacher, O., Göbel, H., Ruck, Μ & Oppermann, Η Crystal structure of dibismuth selenium pentoxide, Bi2SeO5. Z. für. Kristallogr. N. Cryst. Struct. 216, 29–30 (2001).

    Article  CAS  Google Scholar 

  23. Li, T., Tu, T., Sun, Y., Fu, H. & Peng, H. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

    Article  CAS  Google Scholar 

  24. Lai, K., Ji, M. B., Leindecker, N., Kelly, M. A. & Shen, Z. X. Atomic-force-microscope-compatible near-field scanning microwave microscope with separated excitation and sensing probes. Rev. Sci. Instrum. 78, 063702 (2007).

    Article  CAS  Google Scholar 

  25. Wu, D. et al. Thickness-dependent dielectric constant of few-layer In2Se3 nano-flakes. Nano Lett. 15, 8136–8140 (2015).

    Article  CAS  Google Scholar 

  26. Laturia, A., Van, D. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  27. Chen, X. et al. Probing the electron states and metal-insulator transition mechanisms in molybdenum disulphide vertical heterostructures. Nat. Commun. 6, 6088 (2015).

    Article  Google Scholar 

  28. Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  CAS  Google Scholar 

  29. Stengel, M. & Spaldin, N. A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 443, 679–682 (2006).

    Article  CAS  Google Scholar 

  30. Ma, N. & Jena, D. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4, 011043 (2014).

    CAS  Google Scholar 

  31. Yu, Z. et al. Realization of room-temperature phonon-limited carrier transport in monolayer MoS2 by dielectric and carrier screening. Adv. Mater. 28, 547–552 (2016).

    Article  CAS  Google Scholar 

  32. Jang, S. K., Youn, J., Song, Y. J. & Lee, S. Synthesis and characterization of hexagonal boron nitride as a gate dielectric. Sci. Rep. 6, 30449 (2016).

    Article  CAS  Google Scholar 

  33. Kim, K. K. et al. Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6, 8583–8590 (2012).

    Article  CAS  Google Scholar 

  34. Ahmed, F. et al. Dielectric dispersion and high field response of multilayer hexagonal boron nitride. Adv. Funct. Mater. 28, 1804235 (2018).

    Article  Google Scholar 

  35. Lin, H. C., Ye, P. D. & Wilk, G. D. Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs. Appl. Phys. Lett. 87, 182904 (2005).

    Article  Google Scholar 

  36. Sire, C., Blonkowski, S., Gordon, M. J. & Baron, T. Statistics of electrical breakdown field in HfO2 and SiO2 films from millimeter to nanometer length scales. Appl. Phys. Lett. 91, 242905 (2007).

    Article  Google Scholar 

  37. Ranjan, A. et al. Dielectric breakdown in single-crystal hexagonal boron nitride. ACS Appl. Electron. Mater. 3, 3547–3554 (2021).

    Article  CAS  Google Scholar 

  38. Worsley, R. et al. All-2D material inkjet-printed capacitors: toward fully printed integrated circuits. ACS Nano 13, 54–60 (2019).

    Article  CAS  Google Scholar 

  39. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    Article  CAS  Google Scholar 

  40. Tan, C. et al. Strain-free layered semiconductors for 2D transistors with on-state current density exceeding 1.3 mA μm1. Nano Lett. 22, 3770–3776 (2022).

    Article  CAS  Google Scholar 

  41. Radisavljevic, B. & Kis, A. Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat. Mater. 12, 815–820 (2013).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  43. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  CAS  Google Scholar 

  44. Vydrov, O. A., Heyd, J., Krukau, A. V. & Scuseria, G. E. Importance of short-range versus long-range Hartree-Fock exchange for the performance of hybrid density functionals. J. Chem. Phys. 125, 074106 (2006).

    Article  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Goossens, A. M. et al. Mechanical cleaning of graphene. Appl. Phys. Lett. 100, 073110 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos. 21920102004, 52021006, T2188101, 52072043, 92164205, 22205011, 21733001 and 22105009), Beijing National Laboratory for Molecular Sciences (grant no. BNLMS-CXTD-202001), the Tencent Foundation (XPLORER PRIZE), National Key R&D Program of China (grant no. 2020YFA0308900), Molecular Materials and Nanofabrication Laboratory in the College of Chemistry at the Peking University, and the Electron Microscopy Laboratory of the Peking University. P.G. acknowledges support from National Key R&D Program of China (2019YFA0708200) and the National Natural Science Foundation of China (grant nos. 52125307, 11974023 and 52021006). H.F. and B.Y. acknowledge support from the National Natural Science Foundation of China (grant no. 12104072). Numerical computations were performed on Hefei Advanced Computing Center. J. Yu and K.L. acknowledge support from the Welch Foundation grant F-1814.

Author information

Authors and Affiliations

Authors

Contributions

H.P. conceived the original idea for the project. C.Z. and T.T. carried out the synthesis and structural characterization of the bulk and 2D crystals. The devices were fabricated by C.Z., J.W., Y. Zhu, Y. Zhang, X.C., X.Z. and measured by J.W. and L.C., with C.T.’s and Q.H.’s help. J. Yin and J.W. analysed the data of transport measurements. C.Z., Y. Zhu and J.Z. carried out the transfer procedure with X.W.’s and Z.L.’s help. H.F., Y.L. and B.Y. carried out the theoretical calculations. J. Yu and K.L. performed the MIM measurements. The STEM measurements were performed by M.W. and R.Z. under the direction of P.G. The manuscript was written by H.P., C.Z., J. Yin, T.T. and J.W. with input from the other authors. T.L., Q.H., H.X., H.H. and H.L. provided suggestions to the manuscript. All work was supervised by H.P. All authors contributed to the scientific planning and discussions.

Corresponding author

Correspondence to Hailin Peng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Takhee Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20, Tables 1 and 2 and Discussion S1–S9.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Tu, T., Wang, J. et al. Single-crystalline van der Waals layered dielectric with high dielectric constant. Nat. Mater. 22, 832–837 (2023). https://doi.org/10.1038/s41563-023-01502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01502-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing