Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors

Abstract

Two-dimensional (2D) semiconductors are promising channel materials for next-generation field-effect transistors (FETs). However, it remains challenging to integrate ultrathin and uniform high dielectrics on 2D semiconductors to fabricate FETs with large gate capacitance. We report a versatile two-step approach to integrating high-quality dielectric film with sub-1 nm equivalent oxide thickness (EOT) on 2D semiconductors. Inorganic molecular crystal Sb2O3 is homogeneously deposited on 2D semiconductors as a buffer layer, which forms a high-quality oxide-to-semiconductor interface and offers a highly hydrophilic surface, enabling the integration of high-κ dielectrics via atomic layer deposition. Using this approach, we can fabricate monolayer molybdenum disulfide-based FETs with the thinnest EOT (0.67 nm). The transistors exhibit an on/off ratio of over 106 using an ultra-low operating voltage of 0.4 V, achieving unprecedently high gating efficiency. Our results may pave the way for the application of 2D materials in low-power ultrascaling electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integration process and structure characterizations of the ultrathin high-κ dielectric layer on 2D materials.
Fig. 2: The formation mechanisms of Sb2O3 and HfO2 layers on 2D materials.
Fig. 3: Low-power FETs and logic gates with our hybrid dielectric layer as gate dielectrics.
Fig. 4: 2D FETs with shorter channels and the benchmark of the 2D FETs with Sb2O3/HfO2 hybrid layer as gate dielectrics.

Similar content being viewed by others

Data availability

The data that support the findings of this study are included in the article and Supplementary Information, and are available from the corresponding author upon reasonable request.

Code availability

All computational data are presented in the paper.

References

  1. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    CAS  Google Scholar 

  2. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    CAS  Google Scholar 

  3. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    CAS  Google Scholar 

  4. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    CAS  Google Scholar 

  5. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    CAS  Google Scholar 

  6. Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS  Google Scholar 

  7. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    CAS  Google Scholar 

  8. Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    CAS  Google Scholar 

  9. Badaroglu, M. International Roadmap for Devices and Systems 2021 (IEEE, 2021); https://irds.ieee.org/editions/2021/more-moore

  10. Knobloch, T. et al. The performance limits of hexagonal boron nitride as an insulator for scaled CMOS devices based on two-dimensional materials. Nat. Electron. 4, 98–108 (2021).

    CAS  Google Scholar 

  11. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    CAS  Google Scholar 

  12. Radisavljevic, B. et al. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    CAS  Google Scholar 

  13. Liu, H. & Ye, P. D. MoS2 dual-gate MOSFET with atomic-layer-deposited Al2O3 as top-gate dielectric. IEEE Electron Device Lett. 33, 546–548 (2012).

    CAS  Google Scholar 

  14. Fang, H. et al. High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12, 3788–3792 (2012).

    CAS  Google Scholar 

  15. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    CAS  Google Scholar 

  16. Jeong, S.-J. et al. Thickness scaling of atomic-layer-deposited HfO2 films and their application to wafer-scale graphene tunnelling transistors. Sci. Rep. 6, 20907 (2016).

    CAS  Google Scholar 

  17. Zhu, Y. et al. Monolayer molybdenum disulfide transistors with single-atom-thick gates. Nano Lett. 18, 3807–3813 (2018).

    CAS  Google Scholar 

  18. Takahashi, N. & Nagashio, K. Buffer layer engineering on graphene via various oxidation methods for atomic layer deposition. Appl. Phys. Express 9, 125101 (2016).

    Google Scholar 

  19. Zou, X. et al. Interface engineering for high-performance top-gated MoS2 field-effect transistors. Adv. Mater. 26, 6255–6261 (2014).

    CAS  Google Scholar 

  20. Lin, D. et al. Dual gate synthetic WS2 MOSFETs with 120 μS/μm Gm 2.7 μF/cm2 capacitance and ambipolar channel. In Proc. 2020 IEEE International Electron Devices Meeting (IEDM) 3.6.1–3.6.4 (IEEE, 2020).

  21. Xu, K. et al. Sub-10 nm nanopattern architecture for 2D material field-effect transistors. Nano Lett. 17, 1065–1070 (2017).

    CAS  Google Scholar 

  22. Fisichella, G. et al. Interface electrical properties of Al2O3 thin films on graphene obtained by atomic layer deposition with an in situ seedlike layer. ACS Appl. Mater. Interfaces 9, 7761–7771 (2017).

    CAS  Google Scholar 

  23. Park, Y. H. et al. Enhanced nucleation of high dielectrics on graphene by atomic layer deposition. Chem. Mater. 28, 7268–7275 (2016).

    CAS  Google Scholar 

  24. Zheng, L. et al. Improvement of Al2O3 films on graphene grown by atomic layer deposition with pre-H2O treatment. ACS Appl. Mater. Interfaces 6, 7014–7019 (2014).

    CAS  Google Scholar 

  25. Xiao, M., Qiu, C., Zhang, Z. & Peng, L.-M. Atomic-layer-deposition growth of an ultrathin HfO2 film on graphene. ACS Appl. Mater. Interfaces 9, 34050–34056 (2017).

    CAS  Google Scholar 

  26. Wang, X. et al. Improved integration of ultra-thin high dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment. Appl. Phys. Lett. 110, 053110 (2017).

    Google Scholar 

  27. Nayfeh, O. M., Marr, T. & Dubey, M. Impact of plasma-assisted atomic-layer-deposited gate dielectric on graphene transistors. IEEE Electron Device Lett. 32, 473–475 (2011).

    CAS  Google Scholar 

  28. Yang, W. et al. The integration of sub-10 nm gate oxide on MoS2 with ultra low leakage and enhanced mobility. Sci. Rep. 5, 11921 (2015).

    Google Scholar 

  29. Bolshakov, P. et al. Improvement in top-gate MoS2 transistor performance due to high quality backside Al2O3 layer. Appl. Phys. Lett. 111, 032110 (2017).

    Google Scholar 

  30. Jandhyala, S. et al. Atomic layer deposition of dielectrics on graphene using reversibly physisorbed ozone. ACS Nano 6, 2722–2730 (2012).

    CAS  Google Scholar 

  31. Wang, J. et al. Integration of high oxide on MoS2 by using ozone pretreatment for high-performance MoS2 top-gated transistor with thickness-dependent carrier scattering investigation. Small 11, 5932–5938 (2015).

    CAS  Google Scholar 

  32. Park, J. H. et al. Atomic layer deposition of Al2O3 on WSe2 functionalized by titanyl phthalocyanine. ACS Nano 10, 6888–6896 (2016).

    CAS  Google Scholar 

  33. Alaboson, J. M. P. et al. Seeding atomic layer deposition of high dielectrics on epitaxial graphene with organic self-assembled monolayers. ACS Nano 5, 5223–5232 (2011).

    CAS  Google Scholar 

  34. Sangwan, V. K. et al. Quantitatively enhanced reliability and uniformity of high-κ dielectrics on graphene enabled by self-assembled seeding layers. Nano Lett. 13, 1162–1167 (2013).

    CAS  Google Scholar 

  35. Bouchet, D., Roy, E., Yu-Zhang, K. & Leprince-Wang, Y. TEM and EELS studies of electrodeposited antimony nanowires. Eur. Phys. J. Appl. Phys. 30, 193–199 (2005).

    CAS  Google Scholar 

  36. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    CAS  Google Scholar 

  37. Yang, J. et al. Direct observation of ultrafast hydrogen bond strengthening in liquid water. Nature 596, 531–535 (2021).

    CAS  Google Scholar 

  38. Shen, P. C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    CAS  Google Scholar 

  39. Ghatak, S., Pal, A. N. & Ghosh, A. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5, 7707–7712 (2011).

    CAS  Google Scholar 

  40. Cheng, L. et al. Sub-10 nm tunable hybrid dielectric engineering on MoS2 for two-dimensional material-based devices. ACS Nano 11, 10243–10252 (2017).

    CAS  Google Scholar 

  41. Li, W. et al. High-performance CVD MoS2 transistors with self-aligned top-gate and Bi contact. In Proc. 2021 IEEE International Electron Devices Meeting (IEDM). 37.3.1–37.3.4 (IEEE, 2021).

  42. Qian, Q. et al. Improved gate dielectric deposition and enhanced electrical stability for single-layer MoS2 MOSFET with an AlN interfacial layer. Sci. Rep. 6, 27676 (2016).

    CAS  Google Scholar 

  43. Chamlagain, B. et al. Thermally oxidized 2D TaS2 as a high-κ gate dielectric for MoS2 field-effect transistors. 2D Mater. 4, 031002 (2017).

    Google Scholar 

  44. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    CAS  Google Scholar 

  45. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  46. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Google Scholar 

  47. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Google Scholar 

  48. Rappe, A. K. et al. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    CAS  Google Scholar 

  49. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    CAS  Google Scholar 

  50. Varshney, V. et al. MD simulations of molybdenum disulphide (MoS2): force-field parameterization and thermal transport behavior. Comput. Mater. Sci. 48, 101–108 (2010).

    CAS  Google Scholar 

  51. Nicolini, P. & Polcar, T. A comparison of empirical potentials for sliding simulations of MoS2. Comput. Mater. Sci. 115, 158–169 (2016).

    CAS  Google Scholar 

  52. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (CRC Press, 1988).

  53. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Oxford Univ. Press, 2017).

  54. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Google Scholar 

  55. Wang, V. et al. VASPKIT: a user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 267, 108033 (2021).

    CAS  Google Scholar 

  56. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  57. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  58. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Google Scholar 

  59. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  60. Xu, H. et al. Quantum capacitance limited vertical scaling of graphene field-effect transistor. ACS Nano 5, 2340–2347 (2011).

    CAS  Google Scholar 

  61. Yoshioka, H. et al. Effects of interface state density on 4H-SiC n-channel field-effect mobility. Appl. Phys. Lett. 104, 083516 (2014).

    Google Scholar 

  62. Zhang, H. et al. Sub‑5 nm monolayer MoS2 transistors toward low-power devices. ACS Appl. Electron. Mater. 3, 1560–1571 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (grant nos. 21825103 (T.Z.), U21A2069 (T.Z.) and 52202171 (K.L.)). We also acknowledge the Analytical and Testing Center of Huazhong University of Science and Technology for the XPS characterizations and analysis. We thank Y. Gao and L. Sun (Huazhong University of Science and Technology) for providing us with graphene and measuring the contact angle.

Author information

Authors and Affiliations

Authors

Contributions

K.L. and T.Z. conceived the ideas. Y.X. and K.L. designed and carried out most experiments under the supervision of T.Z. T.L. and Y.Z. carried out the work of the molecular dynamics simulation and first-principles calculations. P.L. and A.N. prepared the cross-sectional samples and performed the STEM characterizations. Lei Liu and X.W. prepared the large-scale monolayer MoS2. Lixin Liu, F.Z., X.F., J.Y. and H.L helped analyse the data. Y.X., K.L. and T.L. worked on the images with assistance from all the other authors. K.L. wrote the paper with input from all co-authors.

Corresponding authors

Correspondence to Kailang Liu or Tianyou Zhai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Peer review information

Nature Materials thanks Xuan Gao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and Table 1.

Supplementary Video 1

The process of Sb2O3 molecules deposition on the surface of MoS2.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, T., Liu, K. et al. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater. 22, 1078–1084 (2023). https://doi.org/10.1038/s41563-023-01626-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01626-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing