Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Single-atom vibrational spectroscopy with chemical-bonding sensitivity

Abstract

Correlation of lattice vibrational properties with local atomic configurations in materials is essential for elucidating functionalities that involve phonon transport in solids. Recent developments in vibrational spectroscopy in a scanning transmission electron microscope have enabled direct measurements of local phonon modes at defects and interfaces by combining high spatial and energy resolution. However, pushing the ultimate limit of vibrational spectroscopy in a scanning transmission electron microscope to reveal the impact of chemical bonding on local phonon modes requires extreme sensitivity of the experiment at the chemical-bond level. Here we demonstrate that, with improved instrument stability and sensitivity, the specific vibrational signals of the same substitutional impurity and the neighbouring carbon atoms in monolayer graphene with different chemical-bonding configurations are clearly resolved, complementary with density functional theory calculations. The present work opens the door to the direct observation of local phonon modes with chemical-bonding sensitivity, and provides more insights into the defect-induced physics in graphene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vibrational spectroscopy of substitutional Si impurities in graphene with different bonding configurations.
Fig. 2: Atom-by-atom analysis of the vibrational EELS spectra in silicon-doped graphene.
Fig. 3: The origin of specific phonon modes observed in Si–C3 and Si–C4.
Fig. 4: Atom-by-atom vibrational spectroscopy analysis of the N–C3 defect in graphene.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data of this study are available from the corresponding authors on reasonable request.

References

  1. Callaway, J. & von Baeyer, H. C. Effect of point imperfections on lattice thermal conductivity. Phys. Rev. 120, 1149–1154 (1960).

    Article  CAS  Google Scholar 

  2. Norris, D. J., Efros, A. L. & Erwin, S. C. Doped nanocrystals. Science 319, 1776–1779 (2008).

    Article  CAS  Google Scholar 

  3. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    Article  CAS  Google Scholar 

  4. Packan, P. A. Pushing the limits. Science 285, 2079–2081 (1999).

    Article  CAS  Google Scholar 

  5. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  CAS  Google Scholar 

  6. Lindsay, L., Broido, D. A. & Mingo, N. Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010).

    Article  Google Scholar 

  7. Polanco, C. A. & Lindsay, L. Ab initio phonon point defect scattering and thermal transport in graphene. Phys. Rev. B 97, 014303 (2018).

    Article  CAS  Google Scholar 

  8. Markussen, T., Jauho, A.-P. & Brandbyge, M. Electron and phonon transport in silicon nanowires: atomistic approach to thermoelectric properties. Phys. Rev. B 79, 035415 (2009).

    Article  Google Scholar 

  9. Brun, C. et al. Remarkable effects of disorder on superconductivity of single atomic layers of lead on silicon. Nat. Phys. 10, 444–450 (2014).

    Article  CAS  Google Scholar 

  10. Cowley, R. A. Acoustic phonon instabilities and structural phase transitions. Phys. Rev. B 13, 4877–4885 (1976).

    Article  CAS  Google Scholar 

  11. Luh, D. A., Miller, T., Paggel, J. J. & Chiang, T. C. Large electron–phonon coupling at an interface. Phys. Rev. Lett. 88, 256802 (2002).

    Article  Google Scholar 

  12. Li, M. et al. Nonperturbative quantum nature of the dislocation–phonon interaction. Nano Lett. 17, 1587–1594 (2017).

    Article  CAS  Google Scholar 

  13. Rez, P. Does phonon scattering give high-resolution images? Ultramicroscopy 52, 260–266 (1993).

    Article  CAS  Google Scholar 

  14. Rez, P. Is localized infrared spectroscopy now possible in the electron microscope? Microsc. Microanal. 20, 671–677 (2014).

    Article  CAS  Google Scholar 

  15. Rez, P. & Singh, A. Lattice resolution of vibrational modes in the electron microscope. Ultramicroscopy 220, 113162 (2021).

    Article  CAS  Google Scholar 

  16. Krivanek, O. L. et al. Vibrational spectroscopy in the electron microscope. Nature 514, 209–212 (2014).

    Article  CAS  Google Scholar 

  17. Miyata, T. et al. Measurement of vibrational spectrum of liquid using monochromated scanning transmission electron microscopy–electron energy loss spectroscopy. Microscopy 63, 377–382 (2014).

    Article  CAS  Google Scholar 

  18. Rez, P. et al. Damage-free vibrational spectroscopy of biological materials in the electron microscope. Nat. Commun. 7, 10945 (2016).

    Article  CAS  Google Scholar 

  19. Govyadinov, A. A. et al. Probing low-energy hyperbolic polaritons in van der Waals crystals with an electron microscope. Nat. Commun. 8, 95 (2017).

    Article  Google Scholar 

  20. Li, N. et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride. Nat. Mater. 20, 43–48 (2020).

    Article  Google Scholar 

  21. Konečná, A., Li, J., Edgar, J. H., García de Abajo, F. J. & Hachtel, J. A. Revealing nanoscale confinement effects on hyperbolic phonon polaritons with an electron beam. Small 17, 2103404 (2021).

    Article  Google Scholar 

  22. Lagos, M. J. & Batson, P. E. Thermometry with subnanometer resolution in the electron microscope using the principle of detailed balancing. Nano Lett. 18, 4556–4563 (2018).

    Article  CAS  Google Scholar 

  23. Idrobo, J. C. et al. Temperature measurement by a nanoscale electron probe using energy gain and loss spectroscopy. Phys. Rev. Lett. 120, 095901 (2018).

    Article  CAS  Google Scholar 

  24. Lagos, M. J., Trügler, A., Hohenester, U. & Batson, P. E. Mapping vibrational surface and bulk modes in a single nanocube. Nature 543, 529–532 (2017).

    Article  CAS  Google Scholar 

  25. Jokisaari, J. R. et al. Vibrational spectroscopy of water with high spatial resolution. Adv. Mater. 30, 1802702 (2018).

    Article  Google Scholar 

  26. Hachtel, J. A. et al. Identification of site-specific isotopic labels by vibrational spectroscopy in the electron microscope. Science 363, 525–528 (2019).

    Article  CAS  Google Scholar 

  27. Li, X. et al. Three-dimensional vectorial imaging of surface phonon polaritons. Science 371, 1364–1367 (2021).

    Article  CAS  Google Scholar 

  28. Senga, R. et al. Position and momentum mapping of vibrations in graphene nanostructures. Nature 573, 247–250 (2019).

    Article  CAS  Google Scholar 

  29. Qi, R. et al. Four-dimensional vibrational spectroscopy for nanoscale mapping of phonon dispersion in BN nanotubes. Nat. Commun. 12, 1179 (2021).

    Article  CAS  Google Scholar 

  30. Qi, R. et al. Measuring phonon dispersion at an interface. Nature 599, 399–403 (2021).

    Article  CAS  Google Scholar 

  31. Cheng, Z. et al. Experimental observation of localized interfacial phonon modes. Nat. Commun. 12, 6901 (2021).

    Article  CAS  Google Scholar 

  32. Yan, X. et al. Single-defect phonons imaged by electron microscopy. Nature 589, 65–69 (2021).

    Article  CAS  Google Scholar 

  33. Hoglund, E. R. et al. Emergent interface vibrational structure of oxide superlattices. Nature 601, 556–561 (2022).

    Article  CAS  Google Scholar 

  34. Gadre, C. A. et al. Nanoscale imaging of phonon dynamics by electron microscopy. Nature 606, 292–297 (2022).

    Article  CAS  Google Scholar 

  35. Dwyer, C. Localization of high-energy electron scattering from atomic vibrations. Phys. Rev. B 89, 054103 (2014).

    Article  Google Scholar 

  36. Dwyer, C. et al. Electron-beam mapping of vibrational modes with nanometer spatial resolution. Phys. Rev. Lett. 117, 256101 (2016).

    Article  CAS  Google Scholar 

  37. Hage, F. S. et al. Nanoscale momentum-resolved vibrational spectroscopy. Sci. Adv. 4, eaar7495 (2018).

    Article  Google Scholar 

  38. Hage, F. S., Kepaptsoglou, D. M., Ramasse, Q. M. & Allen, L. J. Phonon spectroscopy at atomic resolution. Phys. Rev. Lett. 122, 016103 (2019).

    Article  CAS  Google Scholar 

  39. Venkatraman, K., Levin, B. D. A., March, K., Rez, P. & Crozier, P. A. Vibrational spectroscopy at atomic resolution with electron impact scattering. Nat. Phys. 15, 1237–1241 (2019).

    Article  CAS  Google Scholar 

  40. Hage, F. S., Radtke, G., Kepaptsoglou, D. M., Lazzeri, M. & Ramasse, Q. M. Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science 367, 1124–1127 (2020).

    Article  CAS  Google Scholar 

  41. Senga, R. et al. Imaging of isotope diffusion using atomic-scale vibrational spectroscopy. Nature 603, 68–72 (2022).

    Article  CAS  Google Scholar 

  42. Li, Y.-H. et al. Atomic-scale probing of heterointerface phonon bridges in nitride semiconductor. Proc. Natl Acad. Sci. USA 119, e2117027119 (2022).

    Article  CAS  Google Scholar 

  43. Xu, J. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021).

    Article  CAS  Google Scholar 

  44. Yan, X., Gadre, C. A., Aoki, T. & Pan, X. Probing molecular vibrations by monochromated electron microscopy. Trends Chem. 4, 76–90 (2022).

    Article  CAS  Google Scholar 

  45. Lugg, N. R., Forbes, B. D., Findlay, S. D. & Allen, L. J. Atomic resolution imaging using electron energy-loss phonon spectroscopy. Phys. Rev. B 91, 144108 (2015).

    Article  Google Scholar 

  46. Allen, L. J., Brown, H. G., Findlay, S. D. & Forbes, B. D. A quantum mechanical exploration of phonon energy-loss spectroscopy using electrons in the aloof beam geometry. Microscopy 67, i24–i29 (2017).

    Article  Google Scholar 

  47. Zhou, W. et al. Direct determination of the chemical bonding of individual impurities in graphene. Phys. Rev. Lett. 109, 206803 (2012).

    Article  Google Scholar 

  48. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  CAS  Google Scholar 

  49. Regan, W. et al. A direct transfer of layer-area graphene. Appl. Phys. Lett. 96, 113102 (2010).

    Article  Google Scholar 

  50. Shi, J., Hu, S., Xia, Y. & Zhou, W. Laboratory design for a Nion monochromated aberration corrected scanning transmission electron microscope. J. Chin. Electron Microsc. Soc. 39, 715–721 (2020).

    Google Scholar 

  51. de la Peña, F. et al. hyperspy/hyperspy Hyperspy v.1.5.2. Zenodo https://doi.org/10.5281/zenodo.3396791 (2019).

  52. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  56. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work at the University of Chinese Academy of Sciences (UCAS) and Institute of Physics (IoP) received financial support from the National Key R&D Program of China with grant no. 2018YFA0305800 (G.S. and W.Z.); the Beijing Outstanding Young Scientist Program with grant no. BJJWZYJH01201914430039 (W.Z.); and the National Natural Science Foundation of China under grant nos 51872285 (W.Z.), 51622211 (W.Z.) and 61888102 (S.D.). Theoretical work at Vanderbilt was supported by the US Department of Energy, Office of Science, Basic Energy Science, Materials Science and Engineering Directorate grant no. DE-FG02-09ER46554 (S.T.P. and D.-L.B.) and the McMinn Endowment (S.T.P.). The research was also supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences with grant no. XDB28000000 (G.S.); the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences with grant no. QYZDB-SSW-JSC019 (W.Z.); and the K. C. Wong Education Foundation of the Chinese Academy of Sciences (D.-L.B.). We thank T. Lovejoy for helping with setting up the electron optics.

Author information

Authors and Affiliations

Authors

Contributions

W.Z. designed the project. M.X. and Aowen Li performed the electron microscopy experiments under the supervision of W.Z.; D.-L.B. and S.T.P. performed the theoretical study. D.M. prepared the graphene sample. M.X., D.-L.B., Aowen Li, S.T.P. and W.Z. wrote the paper with additional input from M.G., S.D., G.S. and S.J.P. Ang Li contributed to the data processing. All authors discussed the results and the paper.

Corresponding authors

Correspondence to Sokrates T. Pantelides or Wu Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xingxu Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Tables 1–3.

Source data

Source Data Fig. 1

Data points of Fig. 1d.

Source Data Fig. 2

Data points of Fig. 2b,c,e,f.

Source Data Fig. 3

Data points of Fig. 3.

Source Data Fig. 4

Data points of Fig. 4b,c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, M., Bao, DL., Li, A. et al. Single-atom vibrational spectroscopy with chemical-bonding sensitivity. Nat. Mater. 22, 612–618 (2023). https://doi.org/10.1038/s41563-023-01500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01500-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing