Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure

Abstract

The electronic and optical properties of van der Waals heterostructures are strongly influenced by the structuration and homogeneity of their nano- and atomic-scale environments. Unravelling this intimate structure–property relationship is a key challenge that requires methods capable of addressing the light–matter interactions in van der Waals materials with ultimate spatial resolution. Here we use a low-temperature scanning tunnelling microscope to probe—with atomic-scale resolution—the excitonic luminescence of a van der Waals heterostructure, made of a transition metal dichalcogenide monolayer stacked onto a few-layer graphene flake supported by a Au(111) substrate. Sharp emission lines arising from neutral, charged and localized excitons are reported. Their intensities and emission energies vary as a function of the nanoscale topography of the van der Waals heterostructure, explaining the variability of the emission properties observed with diffraction-limited approaches. Our work paves the way towards understanding and controlling optoelectronic phenomena in moiré superlattices with atomic-scale resolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: STM-induced luminescence of MoSe2/FLG/Au(111) heterostructure.
Fig. 2: Spatially resolved STML in an inhomogeneous nanoscale landscape.
Fig. 3: STML on atomically resolved areas.
Fig. 4: STS and proposed microscopic mechanism for STML.

Similar content being viewed by others

Data availability

Source data necessary to reproduce the results shown in the Article and Supplementary Information are available via figshare at https://doi.org/10.6084/m9.figshare.21913017. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    Article  CAS  Google Scholar 

  2. Mak, K. F. & Shan, J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photon. 10, 216–226 (2016).

    Article  CAS  Google Scholar 

  3. Shree, S., Paradisanos, I., Marie, X., Robert, C. & Urbaszek, B. Guide to optical spectroscopy of layered semiconductors. Nat. Rev. Phys. 3, 39–54 (2021).

    Article  CAS  Google Scholar 

  4. Harats, M. G., Kirchhof, J. N., Qiao, M., Greben, K. & Bolotin, K. I. Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photon. 14, 324–329 (2020).

    Article  CAS  Google Scholar 

  5. Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    Article  Google Scholar 

  6. Chow, P. K. et al. Defect-induced photoluminescence in monolayer semiconducting transition metal dichalcogenides. ACS Nano 9, 1520–1527 (2015).

    Article  CAS  Google Scholar 

  7. Tongay, S. et al. Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating. Nano Lett. 13, 2831–2836 (2013).

    Article  CAS  Google Scholar 

  8. Wilson, N. P., Yao, W., Shan, J. & Xu, X. Excitons and emergent quantum phenomena in stacked 2D semiconductors. Nature 599, 383–392 (2021).

    Article  CAS  Google Scholar 

  9. Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin–orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  Google Scholar 

  10. Pommier, D. et al. Scanning tunneling microscope-induced excitonic luminescence of a two-dimensional semiconductor. Phys. Rev. Lett. 123, 027402 (2019).

    Article  CAS  Google Scholar 

  11. Darlington, T. P. et al. Imaging strain-localized excitons in nanoscale bubbles of monolayer WSe2 at room temperature. Nat. Nanotechnol. 15, 854–860 (2020).

    Article  CAS  Google Scholar 

  12. Bonnet, N. et al. Nanoscale modification of WS2 trion emission by its local electromagnetic environment. Nano Lett. 21, 10178–10185 (2021).

    Article  CAS  Google Scholar 

  13. Péchou, R. et al. Plasmonic-induced luminescence of MoSe2 monolayers in a scanning tunneling microscope. ACS Photonics 7, 3061–3070 (2020).

    Article  Google Scholar 

  14. Peña Román, R. J. et al. Tunneling-current-induced local excitonic luminescence in p-doped WSe2 monolayers. Nanoscale 12, 13460–13470 (2020).

    Article  Google Scholar 

  15. Zhang, S. et al. Nano-spectroscopy of excitons in atomically thin transition metal dichalcogenides. Nat. Commun. 13, 542 (2022).

    Article  CAS  Google Scholar 

  16. Peña Román, R. J. et al. Tip-induced and electrical control of the photoluminescence yield of monolayer WS2. Nano Lett. 22, 9244–9251 (2022).

    Article  Google Scholar 

  17. Qiu, X. H., Nazin, G. V. & Ho, W. Vibrationally resolved fluorescence excited with submolecular precision. Science 299, 542–546 (2003).

    Article  CAS  Google Scholar 

  18. Zhang, Y. et al. Visualizing coherent intermolecular dipole–dipole coupling in real space. Nature 531, 623–627 (2016).

    Article  CAS  Google Scholar 

  19. Doppagne, B. et al. Vibronic spectroscopy with submolecular resolution from STM-induced electroluminescence. Phys. Rev. Lett. 118, 127401 (2017).

    Article  Google Scholar 

  20. Imada, H. et al. Real-space investigation of energy transfer in heterogeneous molecular dimers. Nature 538, 364–367 (2016).

    Article  CAS  Google Scholar 

  21. Krane, N., Lotze, C., Lager, J. M., Reecht, G. & Franke, K. J. Electronic structure and luminescence of quasi-freestanding MoS2 nanopatches on Au(111). Nano Lett. 16, 5163–5168 (2016).

    Article  CAS  Google Scholar 

  22. Schuler, B. et al. Electrically driven photon emission from individual atomic defects in monolayer WS2. Sci. Adv. 6, eabb5988 (2020).

    Article  CAS  Google Scholar 

  23. Velický, M. et al. Strain and charge doping fingerprints of the strong interaction between monolayer MoS2 and gold. J. Phys. Chem. Lett. 11, 6112–6118 (2020).

    Article  Google Scholar 

  24. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  CAS  Google Scholar 

  25. Cadiz, F. et al. Excitonic linewidth approaching the homogeneous limit in MoS2-based van der Waals heterostructures. Phys. Rev. X 7, 021026 (2017).

    Google Scholar 

  26. Rosławska, A. et al. Mapping Lamb, Stark, and Purcell effects at a chromophore-picocavity junction with hyper-resolved fluorescence microscopy. Phys. Rev. X 12, 011012 (2022).

    Google Scholar 

  27. Ross, J. S. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).

    Article  Google Scholar 

  28. Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  Google Scholar 

  29. Lorchat, E. et al. Filtering the photoluminescence spectra of atomically thin semiconductors with graphene. Nat. Nanotechnol. 15, 283–288 (2020).

    Article  CAS  Google Scholar 

  30. Parra López, L. E. et al. Single- and narrow-line photoluminescence in a boron nitride-supported MoSe2/graphene heterostructure. C. R. Phys. 22, 77–88 (2021).

    Google Scholar 

  31. Wu, S. W., Nazin, G. V. & Ho, W. Intramolecular photon emission from a single molecule in a scanning tunneling microscope. Phys. Rev. B 77, 205430 (2008).

    Article  Google Scholar 

  32. Robert, C. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 93, 205423 (2016).

    Article  Google Scholar 

  33. Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    Article  CAS  Google Scholar 

  34. He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    Article  CAS  Google Scholar 

  35. Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    Article  CAS  Google Scholar 

  36. Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    Article  CAS  Google Scholar 

  37. Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    Article  CAS  Google Scholar 

  38. Hill, H. M. et al. Exciton broadening in WS2/graphene heterostructures. Phys. Rev. B 96, 205401 (2017).

    Article  Google Scholar 

  39. Goryca, M. et al. Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields. Nat. Commun. 10, 4172 (2019).

    Article  CAS  Google Scholar 

  40. Raja, A. et al. Coulomb engineering of the bandgap and excitons in two-dimensional materials. Nat. Commun. 8, 15251 (2017).

    Article  Google Scholar 

  41. Froehlicher, G., Lorchat, E. & Berciaud, S. Charge versus energy transfer in atomically thin graphene-transition metal dichalcogenide van der Waals heterostructures. Phys. Rev. X 8, 011007 (2018).

    CAS  Google Scholar 

  42. Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    Article  CAS  Google Scholar 

  43. Zhang, C. et al. Probing critical point energies of transition metal dichalcogenides: surprising indirect gap of single layer WSe2. Nano Lett. 15, 6494–6500 (2015).

    Article  CAS  Google Scholar 

  44. Miwa, K. et al. Many-body state description of single-molecule electroluminescence driven by a scanning tunneling microscope. Nano Lett. 19, 2803–2811 (2019).

    Article  CAS  Google Scholar 

  45. Doležal, J., Canola, S., Merino, P. & Švec, M. Exciton-trion conversion dynamics in a single molecule. ACS Nano 15, 7694–7699 (2021).

    Article  Google Scholar 

  46. Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).

    Article  CAS  Google Scholar 

  47. Huang, B. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. 19, 1276–1289 (2020).

    Article  Google Scholar 

  48. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  CAS  Google Scholar 

  49. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  CAS  Google Scholar 

  50. Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    Article  CAS  Google Scholar 

  51. Baek, H. et al. Highly energy-tunable quantum light from moiré-trapped excitons. Sci. Adv. 6, eaba8526 (2020).

    Article  CAS  Google Scholar 

  52. Liu, E. et al. Signatures of moiré trions in WSe2/MoSe2 heterobilayers. Nature 594, 46–50 (2021).

    Article  CAS  Google Scholar 

  53. Imada, H. et al. Single-molecule laser nanospectroscopy with micro-electron volt energy resolution. Science 373, 95–98 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Chong, B. Doppagne, G. Froehlicher, A. Gloppe, E. Le Moal, E. Lorchat and T. Neuman for fruitful discussions. We are grateful to the IPCMS mechanical workshop, particularly H. Sumar, as well as V. Speisser, M. Romeo and the STnano cleanroom staff for technical support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 771850) and the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 894434. We acknowledge financial support from the Agence Nationale de la Recherche under grant ATOEMS ANR-20-CE24-0010. This work of the Interdisciplinary Thematic Institute QMat, as part of the ITI 2021 2028 program of the University of Strasbourg, CNRS and Inserm, was supported by IdEx Unistra (ANR 10 IDEX 0002), as well as by SFRI STRAT’US project (ANR 20 SFRI 0012) and EUR QMAT ANR-17-EURE-0024 under the framework of the French Investments for the Future Program. S.B. acknowledges support from the Indo-French Centre for the Promotion of Advanced Research (CEFIPRA) and from the Institut Universitaire de France (IUF).

Author information

Authors and Affiliations

Authors

Contributions

S.B. and G.S. initiated and supervised the project. L.E.P.L., A.R., F.S. and G.S. built the STML setup. L.E.P.L. fabricated the sample and performed all the PL and STML measurements, with input from A.R., S.B. and G.S. L.E.P.L., S.B. and G.S. analysed the experimental data. All the authors discussed the results and contributed to the editing of the paper.

Corresponding authors

Correspondence to Stéphane Berciaud or Guillaume Schull.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Libai Huang, Lukas Novotny and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4 and Sections 1–4.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Fig. 2.

Supplementary Data 2

Source data for Supplementary Fig. 3.

Supplementary Data 3

Source data for Supplementary Fig. 4.

Source data

Source Data Fig. 1

Source data for Fig. 1.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3.

Source Data Fig. 4

Source data for Fig. 4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, L.E.P., Rosławska, A., Scheurer, F. et al. Tip-induced excitonic luminescence nanoscopy of an atomically resolved van der Waals heterostructure. Nat. Mater. 22, 482–488 (2023). https://doi.org/10.1038/s41563-023-01494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01494-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing