Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering

Abstract

Lightweight design strategies and advanced energy applications call for high-strength Al alloys that can serve in the 300‒400 °C temperature range. However, the present commercial high-strength Al alloys are limited to low-temperature applications of less than ~150 °C, because it is challenging to achieve coherent nanoprecipitates with both high thermal stability (preferentially associated with slow-diffusing solutes) and large volume fraction (mostly derived from high-solubility and fast-diffusing solutes). Here we demonstrate an interstitial solute stabilizing strategy to produce high-density, highly stable coherent nanoprecipitates (termed the V phase) in Sc-added Al–Cu–Mg–Ag alloys, enabling the Al alloys to reach an unprecedented creep resistance as well as exceptional tensile strength (~100 MPa) at 400 °C. The formation of the V phase, assembling slow-diffusing Sc and fast-diffusing Cu atoms, is triggered by coherent ledge-aided in situ phase transformation, with diffusion-dominated Sc uptake and self-organization into the interstitial ordering of early-precipitated Ω phase. We envisage that the ledge-mediated interaction between slow- and fast-diffusing atoms may pave the way for the stabilization of coherent nanoprecipitates towards advanced 400 °C-level light alloys, which could be readily adapted to large-scale industrial production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Highly stable nanoprecipitates in the Sc-microalloyed alloy.
Fig. 2: Unprecedented mechanical properties at 400 °C.
Fig. 3: Strong crystal structure with interstitial Sc ordering.
Fig. 4: In situ phase transformation via diffusion-dominated Sc uptake and interstitial ordering.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and Supplementary Information files. Additional images are available from the corresponding authors upon request.

References

  1. Jiang, S. et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 544, 460–464 (2017).

    Article  CAS  Google Scholar 

  2. Sun, W. et al. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 363, 972–975 (2019).

    Article  CAS  Google Scholar 

  3. Kurnsteiner, P. et al. High-strength Damascus steel by additive manufacturing. Nature 582, 515–519 (2020).

    Article  Google Scholar 

  4. Yang, Y. et al. Bifunctional nanoprecipitates strengthen and ductilize a medium-entropy alloy. Nature 595, 245–249 (2021).

    Article  CAS  Google Scholar 

  5. Raabe, D., Tasan, C. C. & Olivetti, E. A. Strategies for improving the sustainability of structural metals. Nature 575, 64–74 (2019).

    Article  CAS  Google Scholar 

  6. Deschamps, A. & Hutchinson, C. R. Precipitation kinetics in metallic alloys: experiments and modeling. Acta Mater. 220, 117338 (2021).

    Article  CAS  Google Scholar 

  7. Hornbogen, E. & Starke, E. A. Theory assisted design of high strength low alloy aluminum. Acta Metall. Mater. 41, 1–16 (1993).

    Article  CAS  Google Scholar 

  8. Knipling, K. E., Dunand, D. C. & Seidman, D. N. Criteria for developing castable, creep-resistant aluminum-based alloys ‒ a review. Z. Metall. 97, 246–265 (2006).

    Article  CAS  Google Scholar 

  9. Zhu, A. W. et al. The intelligent design of high strength, creep-resistant aluminum alloys. Mater. Sci. Forum 396-402, 21–30 (2002).

    Article  CAS  Google Scholar 

  10. Polmear, I. J. & Couper, M. J. Design and development of an experimental wrought aluminum alloy for use at elevated temperatures. Metall. Mater. Trans. A 19, 1027–1035 (1988).

    Article  Google Scholar 

  11. Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase Transformations in Metals and Alloys (CRC Press, 2021).

  12. Zedalis, M. S. & Fine, M. E. Precipitation and Ostwald ripening in dilute Al base-Zr-V alloys. Metall. Mater. Trans. A 17A, 2187–2198 (1986).

    Article  CAS  Google Scholar 

  13. Marquis, E. A. & Seidman, D. N. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 49, 1909–1919 (2001).

    Article  CAS  Google Scholar 

  14. Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. Nat. Mater. 5, 482–488 (2006).

    Article  CAS  Google Scholar 

  15. Ryum, N. in Aluminum Alloys: Their Physical and Mechanical Properties Vol. 3 (eds Starke, E. A. Jr & Sanders, T. H. Jr) 1511 (Engineering Materials Advisory Services, 1986).

  16. Liu, G. et al. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater. Sci. Eng. A 344, 113–124 (2003).

    Article  Google Scholar 

  17. Deschamps, A. & Bréchet, Y. Influence of predeformation and ageing of an Al-Zn-Mg alloy — II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293–305 (1998).

    Article  Google Scholar 

  18. Orthacker, A. et al. Diffusion-defining atomic-scale spinodal decomposition within nanoprecipitates. Nat. Mater. 17, 1101–1107 (2018).

    Article  CAS  Google Scholar 

  19. Booth-Morrison, C., Dunand, D. C. & Seidman, D. N. Coarsening resistance at 400 °C of precipitation-strengthened Al–Zr–Sc–Er alloys. Acta Mater. 59, 7029–7042 (2011).

    Article  CAS  Google Scholar 

  20. Polmear, I. J., Nie, J.-F., Qian, M. & StJohn, D. Light Alloys: Metallurgy of the Light Metals (Butterworth-Heinemann, 2017).

  21. Yang, C. et al. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al-Cu alloys with minor Sc addition. Acta Mater. 119, 68–79 (2016).

    Article  CAS  Google Scholar 

  22. Shyam, A. et al. Elevated temperature microstructural stability in cast AlCuMnZr alloys through solute segregation. Mater. Sci. Eng. A 765, 138279 (2019).

    Article  CAS  Google Scholar 

  23. Kirchheim, R. Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation. I. Theoretical background. Acta Mater. 55, 5129–5138 (2007).

    Article  CAS  Google Scholar 

  24. Gao, Y. H. et al. Stabilizing nanoprecipitates in Al-Cu alloys for creep resistance at 300 °C. Mater. Res. Lett. 7, 18–25 (2019).

    Article  CAS  Google Scholar 

  25. Michi, R. A. et al. Microstructural evolution and strengthening mechanisms in a heat-treated additively manufactured Al–Cu–Mn–Zr alloy. Mater. Sci. Eng. A 840, 142928 (2022).

    Article  CAS  Google Scholar 

  26. Muddle, B. C. & Polmear, I. J. The precipitate Ω phase in Al-Cu-Mg-Ag alloys. Acta Metall. 37, 777–789 (1989).

    Article  CAS  Google Scholar 

  27. Hutchinson, C. R., Fan, X., Pennycook, S. J. & Shiflet, G. J. On the origin of the high coarsening resistance of Ω plates in Al-Cu-Mg-Ag Alloys. Acta Mater. 49, 2827–2841 (2001).

    Article  CAS  Google Scholar 

  28. Ringer, S. P., Yeung, W., Muddle, B. C. & Polmear, I. J. Precipitate stability in Al-Cu-Mg-Ag alloys aged at high temperatures. Acta Metall. Mater. 42, 1715–1725 (1994).

    Article  CAS  Google Scholar 

  29. Pauw, B. R., Pedersen, J. S., Tardif, S., Takata, M. & Iversen, B. B. Improvements and considerations for size distribution retrieval from small-angle scattering data by Monte Carlo methods. J. Appl. Cryst. 46, 365–371 (2013).

    Article  CAS  Google Scholar 

  30. De Geuser, F., Styles, M. J., Hutchinson, C. R. & Deschamps, A. High-throughput in-situ characterization and modeling of precipitation kinetics in compositionally graded alloys. Acta Mater. 101, 1–9 (2015).

    Article  Google Scholar 

  31. De Luca, A., Seidman, D. N. & Dunand, D. C. Mn and Mo additions to a dilute Al-Zr-Sc-Er-Si-based alloy to improve creep resistance through solid-solution- and precipitation-strengthening. Acta Mater. 194, 60–67 (2020).

    Article  Google Scholar 

  32. Ng, D. S. & Dunand, D. C. Aging- and creep-resistance of a cast hypoeutectic Al-6.9Ce-9.3Mg (wt.%) alloy. Mater. Sci. Eng. A 786, 139398 (2020).

    Article  CAS  Google Scholar 

  33. Wakashima, K., Moriyama, T. & Mori, T. Steady-state creep of a particulate SiC/6061 Al composite. Acta Mater. 48, 891–901 (2000).

    Article  CAS  Google Scholar 

  34. Michi, R. A. et al. A creep-resistant additively manufactured Al-Ce-Ni-Mn alloy. Acta Mater. 227, 117699 (2022).

    Article  CAS  Google Scholar 

  35. Chen, J. H., Costan, E., Huis, M. A., van, Xu, Q. & Zandbergen, H. W. Atomic pillar-based nanoprecipitates strengthen AlMgSi alloys. Science 312, 416–419 (2006).

    Article  CAS  Google Scholar 

  36. Chisholm, M. F. et al. Atomic structures of interfacial solute gateways to θ′ precipitates in Al-Cu alloys. Acta Mater. 212, 116891 (2021).

    Article  CAS  Google Scholar 

  37. Poplawsky, J. D. et al. The synergistic role of Mn and Zr/Ti in producing θ′/L12 co-precipitates in Al-Cu alloys. Acta Mater. 194, 577–586 (2020).

    Article  CAS  Google Scholar 

  38. Rakhmonov, J. U., Bahl, S., Shyam, A. & Dunand, D. C. Cavitation-resistant intergranular precipitates enhance creep performance of θ′-strengthened Al-Cu based alloys. Acta Mater. 228, 117788 (2022).

    Article  CAS  Google Scholar 

  39. Toropova, L. S., Eskin, D. G., Kharakterova, M. L. & Dobatkina, T. V. Advanced Aluminum Alloys Containing Scandium: Structure and Properties (Routledge, 2017).

  40. Gazizov, M., Teleshov, V., Zakharov, V. & Kaibyshev, R. Solidification behaviour and the effects of homogenisation on the structure of an Al–Cu–Mg–Ag–Sc alloy. J. Alloy. Compd. 509, 9497–9507 (2011).

    Article  CAS  Google Scholar 

  41. Shiflet, G. J., Aaronson, H. I. & Courtney, T. H. Kinetics of coarsening by the ledge mechanism. Acta Metall. 27, 377–385 (1979).

    Article  CAS  Google Scholar 

  42. Bréchet, Y. & Purdy, G. A self-consistent treatment of precipitate growth via ledge migration in the presence of interfacial dissipation. Scr. Mater. 52, 7–10 (2005).

    Article  Google Scholar 

  43. Reich, L., Murayama, M. & Hono, K. Evolution of Ω phase in an Al–Cu–Mg–Ag alloy—a three-dimensional atom probe study. Acta Mater. 46, 6053–6062 (1998).

    Article  CAS  Google Scholar 

  44. Fonda, R. W., Cassada, W. A. & Shiflet, G. J. Accomodation of the misfit strain surrounding {III} precipitates (Ω) in Al-Cu-Mg-(Ag). Acta Metall. Mater. 40, 2539–2546 (1992).

    Article  CAS  Google Scholar 

  45. Knowles, K. M. & Stobbs, W. M. The structure of {111} age-hardening precipitates in Al–Cu–Mg–Ag alloys. Acta Cryst. B 44, 207–227 (1988).

    Article  Google Scholar 

  46. Zhu, Y. M. et al. Growth and transformation mechanisms of 18R and 14H in Mg–Y–Zn alloys. Acta Mater. 60, 6562–6672 (2012).

    Article  CAS  Google Scholar 

  47. Chen, G. et al. Effects of ledge density on the morphology and growth kinetics of precipitates in a Ni–Cr Alloy. Acta Mater. 53, 895–906 (2005).

    Article  CAS  Google Scholar 

  48. Chattopadhyay, K. & Aaronson, H. I. Interfacial structure and crystallographic studies of transformation in β′ and β Cu-Zn alloys—I. Isothermal formation of α1 plates from β′. Acta Metall. 34, 695–711 (1986).

    Article  CAS  Google Scholar 

  49. Fu, X. Q. et al. Atomic-scale observation of non-classical nucleation-mediated phase transformation in a titanium alloy. Nat. Mater. 21, 290–296 (2022).

    Article  CAS  Google Scholar 

  50. Chai, Y. W. et al. Disconnections and Laves (C14) precipitation in high-Cr ferritic stainless steels. Acta Mater. 198, 230–241 (2020).

    Article  CAS  Google Scholar 

  51. Gazizov, M. & Kaibyshev, R. Effect of pre-straining on the aging behavior and mechanical properties of an Al–Cu–Mg–Ag alloy. Mater. Sci. Eng. A 625, 119–130 (2015).

    Article  CAS  Google Scholar 

  52. Nie, J. F. & Muddle, B. C. Strengthening of an Al–Cu–Sn alloy by deformation-resistant precipitate plates. Acta Mater. 56, 3490–3501 (2008).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  55. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  56. Kim, K., Zhou, B.-C. & Wolverton, C. First-principles study of crystal structure and stability of T1 precipitates in Al-Li-Cu alloys. Acta Mater. 145, 337–346 (2018).

    Article  CAS  Google Scholar 

  57. Vaithyanathan, V., Wolverton, C. & Chen, L. Q. Multiscale modeling of θ′ precipitation in Al–Cu binary alloys. Acta Mater. 52, 2973–2987 (2004).

    Article  CAS  Google Scholar 

  58. Na, B., Zhou, B.-C., Wolverton, C. & Kim, K. First-principles calculations of bulk and interfacial thermodynamic properties of the T1 phase in Al-Cu-Li alloys. Scr. Mater. 202, 114009 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant nos 51790482, 52071253, 52001249 and 52271115) and the 111 Project of China (BP0618008). This work was also supported by the International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies. Y.P. acknowledges the support from the National Natural Science Foundation of China (grant no. 51801087). We acknowledge experimental assistance from S. W. Guo, W. Wang and J. Li (Xi’an Jiaotong University). We sincerely acknowledge discussions with R. H. Wang (Xi’an University of Technology) and J. Kuang (Xi’an Jiaotong University) on crystal structure. We thank H. Li and W. Q. Liu (Shanghai University) for their help with APT experiments. We also thank the High Performance Computing Center and Instrumental Analysis Center of Xi’an Jiaotong University for help with simulations and experiments.

Author information

Authors and Affiliations

Authors

Contributions

G.L., A.D. and J.S. initiated and supervised the project. H.X. and C.Y. prepared the alloys and carried out most of the microscopy and all the mechanical property testing. F.D.G. performed the SAXS experiments and data analysis. H.X., C.Y., P.Z. and J.Z. performed the APT examination and data analysis. B.C. and Y.P. performed the HAADF examinations. F.L. and J.B. performed the DFT calculations. All authors extensively discussed the data. G.L., F.D.G., A.D. and J.S. wrote the paper.

Corresponding authors

Correspondence to Gang Liu, Alexis Deschamps or Jun Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Dmitry Eskin, Amit Shyam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Tables 1 and 2 and Notes 1–7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, H., Yang, C., De Geuser, F. et al. Highly stable coherent nanoprecipitates via diffusion-dominated solute uptake and interstitial ordering. Nat. Mater. 22, 434–441 (2023). https://doi.org/10.1038/s41563-022-01420-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01420-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing