Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hierarchically structured bioinspired nanocomposites

Abstract

Next-generation structural materials are expected to be lightweight, high-strength and tough composites with embedded functionalities to sense, adapt, self-repair, morph and restore. This Review highlights recent developments and concepts in bioinspired nanocomposites, emphasizing tailoring of the architecture, interphases and confinement to achieve dynamic and synergetic responses. We highlight cornerstone examples from natural materials with unique mechanical property combinations based on relatively simple building blocks produced in aqueous environments under ambient conditions. A particular focus is on structural hierarchies across multiple length scales to achieve multifunctionality and robustness. We further discuss recent advances, trends and emerging opportunities for combining biological and synthetic components, state-of-the-art characterization and modelling approaches to assess the physical principles underlying nature-inspired design and mechanical responses at multiple length scales. These multidisciplinary approaches promote the synergetic enhancement of individual materials properties and an improved predictive and prescriptive design of the next era of structural materials at multilength scales for a wide range of applications.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Keratin-based hierarchical structures in different animal species.
Fig. 2: Hierarchical bioinspired composite designs in terms of space and time, and major contributions in mechanical functionality.
Fig. 3: Fibre-based composites.
Fig. 4: Analysis of the mechanical properties of various composites and comparison with natural and traditional materials classes.
Fig. 5: Insights into the function and mechanics of bioinspired composites by modelling and simulation.

References

  1. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 14, 23–36 (2015).

    Article  CAS  Google Scholar 

  2. Liu, Z. Q., Meyers, M. A., Zhang, Z. F. & Ritchie, R. O. Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications. Prog. Mater. Sci. 88, 467–498 (2017).

    Article  CAS  Google Scholar 

  3. Clancy, A. J., Anthony, D. B. & De Luca, F. Metal mimics: lightweight, strong, and tough nanocomposites and nanomaterial assemblies. ACS Appl. Mater. Interfaces 12, 15955–15975 (2020).

    Article  CAS  Google Scholar 

  4. Ritchie, R. O. The conflicts between strength and toughness. Nat. Mater. 10, 817–822 (2011).

    Article  CAS  Google Scholar 

  5. Kotov, N. A., Dekany, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  CAS  Google Scholar 

  6. Huang, W. et al. Multiscale toughening mechanisms in biological materials and bioinspired designs. Adv. Mater. 31, 1901561 (2019).

    Article  CAS  Google Scholar 

  7. Tadepalli, S., Slocik, J. M., Gupta, M. K., Naik, R. R. & Singamaneni, S. Bio-optics and bio-inspired optical materials. Chem. Rev. 117, 12705–12763 (2017).

    Article  CAS  Google Scholar 

  8. Wang, B., Yang, W., McKittrick, J. & Meyers, M. A. Keratin: structure, mechanical properties, occurrence in biological organisms, and efforts at bioinspiration. Prog. Mater. Sci. 76, 229–318 (2016).

    Article  CAS  Google Scholar 

  9. Huang, W. et al. A natural energy absorbent polymer composite: the equine hoof wall. Acta Biomater. 90, 267–277 (2019).

    Article  CAS  Google Scholar 

  10. Chen, M. L. et al. The hierarchical structure and mechanical performance of a natural nanocomposite material: the turtle shell. Colloids Surf. A 520, 97–104 (2017).

    Article  CAS  Google Scholar 

  11. Hieronymus, T. L., Witmer, L. M. & Ridgely, R. C. Structure of white rhinoceros (Ceratotherium simum) horn investigated by X-ray computed tomography and histology with implications for growth and external form. J. Morphol. 267, 1172–1176 (2006).

    Article  Google Scholar 

  12. Chon, M. J. et al. Lamellae spatial distribution modulates fracture behavior and toughness of African pangolin scales. J. Mech. Behav. Biomed. Mater. 76, 30–37 (2017).

    Article  Google Scholar 

  13. Teyssier, J., Saenko, S. V., van der Marel, D. & Milinkovitch, M. C. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6, 6368 (2015).

    Article  CAS  Google Scholar 

  14. Ren, J. et al. Biological material interfaces as inspiration for mechanical and optical material designs. Chem. Rev. 119, 12279–12336 (2019).

    Article  CAS  Google Scholar 

  15. Morits, M. et al. Toughness and fracture properties in nacre-mimetic clay/polymer nanocomposites. Adv. Funct. Mater. 27, 1605378 (2017).

    Article  Google Scholar 

  16. Natarajan, B. & Gilman, J. Bioinspired bouligand cellulose nanocrystal composites: a review of mechanical properties. Phil. Trans. A 376, 20170050 (2018).

    Article  Google Scholar 

  17. Zhao, Q. L., Wang, Y. L., Cui, H. Q. & Du, X. M. Bio-inspired sensing and actuating materials. J. Mater. Chem. C 7, 6493–6511 (2019).

    Article  CAS  Google Scholar 

  18. de Espinosa, L. M., Meesorn, W., Moatsou, D. & Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 117, 12851–12892 (2017).

    Article  Google Scholar 

  19. Egan, P., Sinko, R., LeDuc, P. R. & Keten, S. The role of mechanics in biological and bio-inspired systems. Nat. Commun. 6, 7418 (2015).

    Article  Google Scholar 

  20. Gladman, A. S., Matsumoto, E. A., Nuzzo, R. G., Mahadevan, L. & Lewis, J. A. Biomimetic 4D printing. Nat. Mater. 15, 413–418 (2016).

    Article  Google Scholar 

  21. Ye, C. H. et al. Bimorph silk microsheets with programmable actuating behavior: experimental analysis and computer simulations. ACS Appl. Mater. Interfaces 8, 17694–17706 (2016).

    Article  CAS  Google Scholar 

  22. Zhang, Y. H. et al. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes. Proc. Natl Acad. Sci. USA 112, 11757–11764 (2015).

    Article  CAS  Google Scholar 

  23. Lee, J. H., Lee, J. S., Kim, D. K., Park, C. H. & Lee, H. R. Clinical outcomes of silk patch in acute tympanic membrane perforation. Clin. Exp. Otorhinolaryngol. 8, 117–122 (2015).

    Article  Google Scholar 

  24. Zhao, C. et al. Layered nanocomposites by shear-flow-induced alignment of nanosheets. Nature 580, 210–215 (2020).

    Article  CAS  Google Scholar 

  25. Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).

    Article  CAS  Google Scholar 

  26. Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

    Article  CAS  Google Scholar 

  27. Grossman, M. et al. Mineral nano-interconnectivity stiffens and toughens nacre-like composite materials. Adv. Mater. 29, 1605039 (2017).

    Article  Google Scholar 

  28. Bai, H. et al. Bioinspired hdroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50–56 (2016).

    Article  CAS  Google Scholar 

  29. Tan, G. Q. et al. Nature-inspired nacre-like composites combining human tooth-matching elasticity and hardness with exceptional damage tolerance. Adv. Mater. 31, 1904603 (2019).

    Article  CAS  Google Scholar 

  30. Mao, L. B. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 354, 107–110 (2016).

    Article  CAS  Google Scholar 

  31. Das, P. et al. Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios. Nat. Commun. 6, 5967 (2015).

    Article  Google Scholar 

  32. Heinz, H. & Ramezani-Dakhel, H. Simulations of inorganic–bioorganic interfaces to discover new materials: insights, comparisons to experiment, challenges, and opportunities. Chem. Soc. Rev. 45, 412–448 (2016).

    Article  CAS  Google Scholar 

  33. Tan, Y. P. et al. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient. Nat. Chem. Biol. 11, 488–495 (2015).

    Article  CAS  Google Scholar 

  34. Gim, J. et al. Nanoscale deformation mechanics reveal resilience in nacre of Pinna nobilis shell. Nat. Commun. 10, 4822 (2019).

    Article  Google Scholar 

  35. Zeng, F. Z. et al. A bioinspired ultratough multifunctional mica-based nanopaper with 3D aramid nanofiber framework as an electrical insulating material. ACS Nano 14, 611–619 (2020).

    Article  CAS  Google Scholar 

  36. Yin, Z., Hannard, F. & Barthelat, F. Impact-resistant nacre-like transparent materials. Science 364, 1260–1263 (2019).

    Article  CAS  Google Scholar 

  37. Weaver, J. C. et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article  CAS  Google Scholar 

  38. Grunenfelder, L. K. et al. Bio-inspired impact-resistant composites. Acta Biomater. 10, 3997–4008 (2014).

    Article  CAS  Google Scholar 

  39. Yang, W. et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior. Acta Biomater. 10, 3599–3614 (2014).

    Article  Google Scholar 

  40. Huang, W. et al. A natural impact-resistant bicontinuous composite nanoparticle coating. Nat. Mater. 19, 1236–1243 (2020).

    Article  CAS  Google Scholar 

  41. Yaraghi, N. A. et al. A sinusoidally architected helicoidal biocomposite. Adv. Mater. 28, 6835–6844 (2016).

    Article  CAS  Google Scholar 

  42. Gansel, J. K. et al. Gold helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

    Article  CAS  Google Scholar 

  43. Urban, M. J. et al. Chiral plasmonic nanostructures enabled by bottom-up approaches. Annu. Rev. Phys. Chem. 70, 275–299 (2019).

  44. Ling, S. J., Kaplan, D. L. & Buehler, M. J. Nanofibrils in nature and materials engineering. Nat. Rev. Mater. 3, 18016 (2018).

    Article  CAS  Google Scholar 

  45. Nikolov, S. et al. Revealing the design principles of high-performance biological composites using ab initio and multiscale simulations: the example of lobster cuticle. Adv. Mater. 22, 519–526 (2010).

    Article  CAS  Google Scholar 

  46. Cherpak, V. et al. Robust chiral organization of cellulose nanocrystals in capillary confinement. Nano Lett. 18, 6770–6777 (2018).

    Article  CAS  Google Scholar 

  47. Guo, J. Q. et al. Biodegradable laser arrays self-assembled from plant resources. Adv. Mater. 32, 2002332 (2020).

    Article  CAS  Google Scholar 

  48. Lin, Y. S., Wei, C. T., Olevsky, E. A. & Meyers, M. A. Mechanical properties and the laminate structure of Arapaima gigas scales. J. Mech. Behav. Biomed. Mater. 4, 1145–1156 (2011).

    Article  CAS  Google Scholar 

  49. Yazawa, K., Malay, A. D., Masunaga, H., Norma-Rashid, Y. & Numata, K. Simultaneous effect of strain rate and humidity on the structure and mechanical behavior of spider silk. Commun. Mater. 1, 10 (2020).

    Article  Google Scholar 

  50. Fu, C. J. et al. Cryogenic toughness of natural silk and a proposed structure–function relationship. Mater. Chem. Front. 3, 2507–2513 (2019).

    Article  CAS  Google Scholar 

  51. Tung, S. O., Ho, S., Yang, M., Zhang, R. L. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

    Article  CAS  Google Scholar 

  52. Gupta, N., Alred, J. M., Penev, E. S. & Yakobson, B. I. Universal strength scaling in carbon nanotube bundles with frictional load transfer. ACS Nano 15, 1342–1350 (2021).

    Article  CAS  Google Scholar 

  53. Guo, C. C. et al. Thermoplastic moulding of regenerated silk. Nat. Mater. 19, 102–108 (2020).

    Article  CAS  Google Scholar 

  54. Chang, H., Luo, J., Gulgunje, P. V. & Kumar, S. Structural and functional fibers. Ann. Rev. Mater. Res. 47, 1–13.29 (2017).

    Article  Google Scholar 

  55. Pramanik, C., Gissinger, J. R., Kumar, S. & Heinz, H. Carbon nanotube dispersion in solvents and polymer solutions: mechanisms, assembly, and preferences. ACS Nano 11, 12805–12816 (2017).

    Article  CAS  Google Scholar 

  56. Davijani, A. A. B. & Kumar, S. Ordered wrapping of poly(methyl methacrylate) on single wall carbon nanotubes. Polymer 70, 278–281 (2015).

    Article  Google Scholar 

  57. Bakhtiary Davijani, A. A., Chang, H., Liu, H. C., Luo, J. & Kumar, S. Stress transfer in nanocomposites enabled by poly(methyl methacrylate) wrapping of carbon nanotubes. Polymer 130, 191–198 (2017).

    Article  CAS  Google Scholar 

  58. Eyckens, D. J. et al. Fiber with butterfly wings: creating colored carbon fibers with increased strength, adhesion, and reversible malleability. ACS Appl. Mater. Interfaces 11, 41617–41625 (2019).

    Article  CAS  Google Scholar 

  59. Asai, M., Zhao, D. & Kumar, S. K. Role of grafting mechanism on the polymer coverage and self-assembly of hairy nanoparticles. ACS Nano 11, 7028–7035 (2017).

    Article  CAS  Google Scholar 

  60. Heinz, H. et al. Nanoparticle decoration with surfactants: molecular interactions, assembly, and applications. Surf. Sci. Rep. 72, 1–58 (2017).

    Article  CAS  Google Scholar 

  61. Hansoge, N. K. et al. Materials by design for stiff and tough hairy nanoparticle assemblies. ACS Nano 12, 7946–7958 (2018).

    Article  CAS  Google Scholar 

  62. Xu, H. et al. Obtaining high mechanical performance silk fibers by feeding purified carbon nanotube/lignosulfonate composite to silkworms. RSC Adv. 9, 3558–3569 (2019).

    Article  CAS  Google Scholar 

  63. Praprotnik, M., Site, L. D. & Kremer, K. Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu. Rev. Phys. Chem. 59, 545–571 (2008).

    Article  CAS  Google Scholar 

  64. Lu, J. X., Luo, M. & Yakobson, B. I. Glass composites reinforced with silicon-doped carbon nanotubes. Carbon 128, 231–236 (2018).

    Article  CAS  Google Scholar 

  65. Tsafack, T. et al. Exploring the interface between single-walled carbon nanotubes and epoxy resin. Carbon 105, 600–606 (2016).

    Article  CAS  Google Scholar 

  66. Heinz, H., Lin, T.-J., Mishra, R. K. & Emami, F. S. Thermodynamically consistent force fields for the assembly of inorganic, organic, and biological nanostructures: the INTERFACE force field. Langmuir 29, 1754–1765 (2013).

    Article  CAS  Google Scholar 

  67. Mason, J. A. et al. Contraction and expansion of stimuli-responsive DNA bonds in flexible colloidal crystals. J. Am. Chem. Soc. 138, 8722–8725 (2016).

    Article  CAS  Google Scholar 

  68. Samanta, D. et al. Multivalent cation-induced actuation of DNA-mediated colloidal superlattices. J. Am. Chem. Soc. 141, 19973–19977 (2019).

    Article  CAS  Google Scholar 

  69. Gissinger, J. R., Pramanik, C., Newcomb, B., Kumar, S. & Heinz, H. Nanoscale structure–property relationships of polyacrylonitrile/CNT composites as a function of polymer crystallinity and CNT diameter. ACS Appl. Mater. Interfaces 10, 1017–1027 (2018).

    Article  CAS  Google Scholar 

  70. Zhao, H. et al. NanoMine schema: an extensible data representation for polymer nanocomposites. APL Mater. 6, 111108 (2018).

    Article  Google Scholar 

  71. Gooneie, A., Schuschnigg, S. & Holzer, C. A review of multiscale computational methods in polymeric materials. Polymers 9, 16 (2017).

    Article  Google Scholar 

  72. Ha, Y. & Bobaru, F. Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010).

    Article  Google Scholar 

  73. Wang, B., Oterkus, S. & Oterkus, E. Determination of horizon size in state-based peridynamics. Continuum Mech. Thermodyn. https://doi.org/10.1007/s00161-020-00896-y (2020).

  74. Vassaux, M., Sinclair, R. C., Richardson, R. A., Suter, J. L. & Coveney, P. V. The role of graphene in enhancing the material properties of thermosetting polymers. Adv. Theory Simul. 2, 1800168 (2019).

    Article  Google Scholar 

  75. Guarin-Zapata, N., Gomez, J., Kisailus, D. & Zavattieri, P. D. Bandgap tuning in bioinspired helicoidal composites. J. Mech. Phys. Solids 131, 344–357 (2019).

    Article  CAS  Google Scholar 

  76. Kronqvist, N. et al. Efficient protein production inspired by how spiders make silk. Nat. Commun. 8, 15504 (2017).

    Article  CAS  Google Scholar 

  77. Valois, E., Mirshafian, R. & Waite, J. H. Phase-dependent redox insulation in mussel adhesion. Sci. Adv. 6, eaaz6486 (2020).

    Article  CAS  Google Scholar 

  78. Wang, C. Y., Xia, K. L., Zhang, Y. Y. & Kaplan, D. L. Silk-based advanced materials for soft electronics. Acc. Chem. Res. 52, 2916–2927 (2019).

    Article  CAS  Google Scholar 

  79. Gu, G. X., Chen, C. T., Richmond, D. J. & Buehler, M. J. Bioinspired hierarchical composite design using machine learning: simulation, additive manufacturing, and experiment. Mater. Horiz. 5, 939–945 (2018).

    Article  CAS  Google Scholar 

  80. Wu, Z. et al. A comprehensive survey on graph neural networks. IEEE Trans. Neural Netw. Learn. Syst. 32, 4–24 (2021).

    Article  Google Scholar 

  81. Wang, M. Q. et al. Biomorphic structural batteries for robotics. Sci. Robot. 5, eaba1912 (2020).

    Article  Google Scholar 

  82. Yu, C. H., Qin, Z., Martin-Martinez, F. J. & Buehler, M. J. A self-consistent sonification method to translate amino acid sequences into musical compositions and application in protein design using artificial intelligence. ACS Nano 13, 7471–7482 (2019).

    Article  CAS  Google Scholar 

  83. Jin, W., Barzilay, R. & Jaakkola, T. Hierarchical generation of molecular graphs using structural motifs. In Proc. 37th International Conference on Machine Learning (eds Hal, D. III & Aarti, S.) 119, 4839–4848 (PMLR, 2020).

  84. Lossada, F., Jiao, D., Hoenders, D. & Walther, A. Recyclable and light-adaptive vitrimer-based nacre-mimetic nanocomposites. ACS Nano 15, 5043–5055 (2021).

    Article  CAS  Google Scholar 

  85. Xin, A. et al. Growing living composites with ordered microstructures and exceptional mechanical properties. Adv. Mater. 33, 2006946 (2021).

    Article  CAS  Google Scholar 

  86. Svagan, A. J., Samir, M. A. S. A. & Berglund, L. A. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 20, 1263–1269 (2008).

    Article  CAS  Google Scholar 

  87. Podsiadlo, P., Tang, Z., Shim, B. S. & Kotov, N. A. Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled nanocomposites. Nano Lett. 7, 1224–1231 (2007).

    Article  CAS  Google Scholar 

  88. Jiang, C. et al. Mechanical properties of robust ultrathin silk fibroin films. Adv. Funct. Mater. 17, 2229–2237 (2007).

    Article  CAS  Google Scholar 

  89. Cheng, Q., Jiang, L. & Tang, Z. Bioinspired layered materials with superior mechanical performance. Acc. Chem. Res. 47, 1256–1266 (2014).

    Article  CAS  Google Scholar 

  90. Gao, H. L. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 287 (2017).

    Article  Google Scholar 

  91. Zhang, Y. et al. Bioinspired, graphene-enabled Ni composites with high strength and toughness. Sci. Adv. 5, eaav5577 (2019).

    Article  CAS  Google Scholar 

  92. Xiong, R. et al. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity. Adv. Mater. 28, 1501–1509 (2016).

    Article  CAS  Google Scholar 

  93. Raut, H. K. et al. Tough and strong: cross-lamella design imparts multifunctionality to biomimetic nacre. ACS Nano 14, 9771–9779 (2020).

    Article  CAS  Google Scholar 

  94. Vollick, B., Kuo, P. Y., Therien-Aubin, H., Yan, N. & Kumacheva, E. Composite cholesteric nanocellulose films with enhanced mechanical properties. Chem. Mater. 29, 789–795 (2017).

    Article  CAS  Google Scholar 

  95. Gu, M., Jiang, C., Liu, D., Prempeh, N. & Smalyukh, I. I. Cellulose nanocrystal/poly(ethylene glycol) composite as an iridescent coating on polymer substrates: structure-color and interface adhesion. ACS Appl. Mater. Interfaces 8, 32565–32573 (2016).

    Article  CAS  Google Scholar 

  96. Wang, B. & Walther, A. Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure. ACS Nano 9, 10637–10646 (2015).

    Article  CAS  Google Scholar 

  97. Sachs, C., Fabritius, H. & Raabe, D. Influence of microstructure on deformation anisotropy of mineralized cuticle from the lobster Homarus americanus. J. Struct. Biol. 161, 120–132 (2008).

    Article  CAS  Google Scholar 

  98. Chen, P.-Y., Lin, A. Y.-M., McKittrick, J. & Meyers, M. A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 4, 587–596 (2008).

    Article  Google Scholar 

  99. Ayutsede, J. et al. Carbon nanotube reinforced Bombyx mori silk nanofibers by the electrospinning process. Biomacromolecules 7, 208–214 (2006).

    Article  CAS  Google Scholar 

  100. Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  101. Hu, K., Gupta, M. K., Kulkarni, D. D. & Tsukruk, V. V. Ultra-robust graphene oxide-silk fibroin nanocomposite membranes. Adv. Mater. 25, 2301–2307 (2013).

    Article  Google Scholar 

  102. Wang, J., Cheng, Q., Lin, L. & Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)–clay–nanofibrillar cellulose artificial nacre. ACS Nano 8, 2739–2745 (2014).

    Article  CAS  Google Scholar 

  103. Watanabe, K. et al. Highly transparent and tough filler composite elastomer inspired by the cornea. ACS Mater. Lett. 2, 325–330 (2020).

    Article  CAS  Google Scholar 

  104. Lönnberg, H., Larsson, K., Lindström, T., Hult, A. & Malmström, E. Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl. Mater. Interfaces 3, 1426–1433 (2011).

    Article  Google Scholar 

  105. Yang, J., Han, C.-R., Zhang, X.-M., Xu, F. & Sun, R.-C. Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47, 4077–4086 (2014).

    Article  CAS  Google Scholar 

  106. Pan, H. et al. Significantly reinforced composite fibers electrospun from silk fibroin/carbon nanotube aqueous solutions. Biomacromolecules 13, 2859–2867 (2012).

    Article  CAS  Google Scholar 

  107. Scaffaro, R. & Maio, A. Integrated ternary bionanocomposites with superior mechanical performance via the synergistic role of graphene and plasma treated carbon nanotubes. Composites B 168, 550–559 (2019).

    Article  CAS  Google Scholar 

  108. Ashby, M. F. Overview no. 80: on the engineering properties of materials. Acta Metall. 37, 1273–1293 (1989).

    Article  CAS  Google Scholar 

  109. CES EduPack (Granta Design, 2009).

  110. Dalton, A. B. et al. Super-tough carbon-nanotube fibres—these extraordinary composite fibres can be woven into electronic textiles. Nature 423, 703–703 (2003).

    Article  CAS  Google Scholar 

  111. Grant, A. M. et al. Silk fibroin–substrate interactions at heterogeneous nanocomposite interfaces. Adv. Funct. Mater. 26, 6380–6392 (2016).

    Article  CAS  Google Scholar 

  112. Wang, Q. et al. Observations of 3 nm silk nanofibrils exfoliated from natural silkworm silk fibers. ACS Mater. Lett. 2, 153–160 (2020).

    Article  CAS  Google Scholar 

  113. Shao, Z. Z. & Vollrath, F. Surprising strength of silkworm silk. Nature 418, 741 (2002).

    Article  CAS  Google Scholar 

  114. Guarin-Zapata, N., Gomez, J., Yaraghi, N., Kisailus, D. & Zavattieri, P. D. Shear wave filtering in naturally-occurring Bouligand structures. Acta Biomater. 23, 11–20 (2015).

    Article  Google Scholar 

  115. Adamcik, J. et al. Measurement of intrinsic properties of amyloid fibrils by the peak force QNM method. Nanoscale 4, 4426–4429 (2012).

    Article  CAS  Google Scholar 

  116. Feng, W. C. et al. Assembly of mesoscale helices with near-unity enantiomeric excess and light–matter interactions for chiral semiconductors. Sci. Adv. 3, e1601159 (2017).

    Article  Google Scholar 

  117. Adstedt, K. et al. Chiral cellulose nanocrystals with intercalated amorphous polysaccharides for controlled iridescence and enhanced mechanics. Adv. Funct. Mater. 30, 2003597 (2020).

    Article  CAS  Google Scholar 

  118. Cao, Y. P., Bolisetty, S., Wolfisberg, G., Adamcik, J. & Mezzenga, R. Amyloid fibril-directed synthesis of silica core–shell nanofilaments, gels, and aerogels. Proc. Natl Acad. Sci. USA 116, 4012–4017 (2019).

    Article  CAS  Google Scholar 

  119. Mittal, N. et al. Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12, 6378–6388 (2018).

    Article  CAS  Google Scholar 

  120. Ling, S. et al. Polymorphic regenerated silk fibers assembled through bioinspired spinning. Nat. Commun. 8, 1387 (2017).

    Article  Google Scholar 

  121. Jolowsky, C., Sweat, R., Park, J. G., Hao, A. & Liang, R. Microstructure evolution and self-assembling of CNT networks during mechanical stretching and mechanical properties of highly aligned CNT composites. Compos. Sci. Tech. 166, 125–130 (2018).

    Article  CAS  Google Scholar 

  122. Huang, Y., Sasano, T., Tsujii, Y. & Ohno, K. Well-defined polymer-brush-coated rod-shaped particles: synthesis and formation of liquid crystals. Macromolecules 49, 8430–8439 (2016).

    Article  CAS  Google Scholar 

  123. Liu, Z., Xu, Z., Hu, X. & Gao, C. Lyotropic liquid crystal of polyacrylonitrile-grafted graphene oxide and its assembled continuous strong nacre-mimetic fibers. Macromolecules 46, 6931–6941 (2013).

    Article  CAS  Google Scholar 

  124. Naguib, M. Multifunctional pure MXene fiber from liquid crystals of only water and MXene. ACS Cent. Sci. 6, 344–346 (2020).

    Article  CAS  Google Scholar 

  125. Djumas, L., Molotnikov, A., Simon, G. P. & Estrin, Y. Enhanced mechanical performance of bio-inspired hybrid structures utilising topological interlocking geometry. Sci. Rep. 6, 26706 (2016).

    Article  CAS  Google Scholar 

  126. Alred, J. M., Bets, K. V., Xie, Y. & Yakobson, B. I. Machine learning electron density in sulfur crosslinked carbon nanotubes. Compos. Sci. Technol. 166, 3–9 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from multiple sources: D.N., the Air Force Office of Scientific Research (AFSOR), 18RXCOR060 and 22RXCOR014; K.D., ONR, N00014-18-1-2528; M.R.B., AFOSR, FA8650-19-2-5209; M.J.B., AFOSR, FATE MURI FA9550-15-1-0514; L.C.H., Office of Naval Research Global, N62909-18-1-2024; S.Keten, PECASE Award ONR, N00014-16-1-3175; G.C.S., Center for Bio-Inspired Energy Sciences (CBES), an Energy Frontiers Research Center (EFRC), under DE-SC0000989; V.V.T., Air Force Research Laboratory, FA8650-16-D-5404, AFOSR, FA9550-20-1-0305 and NSF-ECCS 2203806; L.C.B., AFOSR, FA9550-18-1-0381; J.A.E., NSF Career Award, CMMI 1454072; P.V.C., Engineering and Physical Sciences Research Council, EP/R029598/1; H.H., NSF CMMI 1940335, NSF OAC 1931587, and NASA Space Technology Research Institute, STRI-NNX17AJ32G.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dhriti Nepal, Vladimir V. Tsukruk or Hendrik Heinz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Lars Berglund, Ali Miserez, Andreas Walther and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nepal, D., Kang, S., Adstedt, K.M. et al. Hierarchically structured bioinspired nanocomposites. Nat. Mater. 22, 18–35 (2023). https://doi.org/10.1038/s41563-022-01384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01384-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing