Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Liquid-like atoms in dense-packed solid glasses

Abstract

Revealing the microscopic structural and dynamic pictures of glasses is a long-standing challenge for scientists1,2. Extensive studies on the structure and relaxation dynamics of glasses have constructed the current classical picture3,4,5: glasses consist of some ‘soft zones’ of loosely bound atoms embedded in a tightly bound atomic matrix. Recent experiments have found an additional fast process in the relaxation spectra6,7,8,9, but the underlying physics of this process remains unclear. Here, combining extensive dynamic experiments and computer simulations, we reveal that this fast relaxation is associated with string-like diffusion of liquid-like atoms, which are inherited from the high-temperature liquids. Even at room temperature, some atoms in dense-packed metallic glasses can diffuse just as easily as they would in liquid states, with an experimentally determined viscosity as low as 107 Pa·s. This finding extends our current microscopic picture of glass solids and might help establish the dynamics–property relationship of glasses4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emergence of the fast-relaxation process in MGs on the dynamic mechanical spectra.
Fig. 2: Correlation between the activation energies of fast relaxation and high-temperature liquids.
Fig. 3: Relaxation map from experimental results of a Y68.9Co31.1 MG as a function of the inverse of temperature, illustrating how a deep glassy solid inherits liquid-like atoms from a high-temperature liquid.
Fig. 4: Identification and characterization of liquid-like atoms in Al90La10 MG near r.t. (300 K) by MD simulations.
Fig. 5: Inheritance of string-like diffusion in the Al90La10 system.

Similar content being viewed by others

Data availability

The data supporting the findings of this work are included within the paper and its Supplementary Information files. Extra data are available from the corresponding authors upon reasonable request.

References

  1. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  CAS  Google Scholar 

  2. Berthier, L. & Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. Mod. Phys. 83, 587–645 (2011).

    Article  CAS  Google Scholar 

  3. Wagner, H. et al. Local elastic properties of a metallic glass. Nat. Mater. 10, 439–442 (2011).

    Article  CAS  Google Scholar 

  4. Wang, W. H. Dynamic relaxations and relaxation–property relationships in metallic glasses. Prog. Mater. Sci. 106, 100561 (2019).

    Article  CAS  Google Scholar 

  5. Wang, Z., Sun, B. A., Bai, H. Y. & Wang, W. H. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat. Commun. 5, 5823 (2014).

    Article  CAS  Google Scholar 

  6. Wang, Q. et al. Unusual fast secondary relaxation in metallic glass. Nat. Commun. 6, 7876 (2015).

    Article  CAS  Google Scholar 

  7. Zhao, L. Z. et al. A fast dynamic mode in rare earth based glasses. J. Chem. Phys. 144, 204507 (2016).

    Article  CAS  Google Scholar 

  8. Wang, Q. et al. Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses. Mater. Today 20, 293–300 (2017).

    Article  CAS  Google Scholar 

  9. Küchemann, S. & Maaß, R. Gamma relaxation in bulk metallic glasses. Scr. Mater. 137, 5–8 (2017).

    Article  Google Scholar 

  10. Day, J. & Beamish, J. Low-temperature shear modulus changes in solid 4He and connection to supersolidity. Nature 450, 853–856 (2007).

    Article  CAS  Google Scholar 

  11. Cavazzoni, C. et al. Superionic and metallic states of water and ammonia at giant planet conditions. Science 283, 44–46 (1999).

    Article  CAS  Google Scholar 

  12. Liu, C. et al. Multiple superionic states in helium–water compounds. Nat. Phys. 15, 1065–1070 (2019).

    Article  CAS  Google Scholar 

  13. Liu, H. L. et al. Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422–425 (2012).

    Article  Google Scholar 

  14. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  15. Huang, P. Y. et al. Imaging atomic rearrangements in two-dimensional silica glass: watching silica’s dance. Science 342, 224–227 (2013).

    Article  CAS  Google Scholar 

  16. Yang, Y. et al. Determining the three-dimensional atomic structure of an amorphous solid. Nature 592, 60–64 (2021).

    Article  CAS  Google Scholar 

  17. Yu, H. B., Wang, W. H., Bai, H. Y. & Samwer, K. The β-relaxation in metallic glasses. Natl Sci. Rev. 1, 429–461 (2014).

    Article  CAS  Google Scholar 

  18. Luo, P., Wen, P., Bai, H. Y., Ruta, B. & Wang, W. H. Relaxation decoupling in metallic glasses at low temperatures. Phys. Rev. Lett. 118, 225901 (2017).

    Article  CAS  Google Scholar 

  19. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  20. Iwashita, T., Nicholson, D. M. & Egami, T. Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013).

    Article  CAS  Google Scholar 

  21. Blodgett, M. E., Egami, T., Nussinov, Z. & Kelton, K. F. Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5, 13837 (2015).

    Article  CAS  Google Scholar 

  22. Chathoth, S. M., Damaschke, B., Embs, J. P. & Samwer, K. Giant changes in atomic dynamics on microalloying metallic melt. Appl. Phys. Lett. 95, 191907 (2009).

    Article  Google Scholar 

  23. Yu, H. B., Wang, W. H., Bai, H. Y., Wu, Y. & Chen, M. W. Relating activation of shear transformation zones to beta relaxations in metallic glasses. Phys. Rev. B 81, 220201 (2010).

    Article  Google Scholar 

  24. Pueblo, C. E., Sun, M. & Kelton, K. F. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids. Nat. Mater. 16, 792–796 (2017).

    Article  CAS  Google Scholar 

  25. Beiner, M. & Ngai, K. L. Interrelation between primary and secondary relaxations in polymerizing systems based on epoxy resins. Macromolecules 38, 7033–7042 (2005).

    Article  CAS  Google Scholar 

  26. Huo, L. S., Zeng, J. F., Wang, W. H., Liu, C. T. & Yang, Y. The dependence of shear modulus on dynamic relaxation and evolution of local structural heterogeneity in a metallic glass. Acta Mater. 61, 4329–4338 (2013).

    Article  CAS  Google Scholar 

  27. Cao, C. R. et al. Liquid-like behaviours of metallic glassy nanoparticles at room temperature. Nat. Commun. 10, 1966 (2019).

    Article  CAS  Google Scholar 

  28. Qiu, W. J. et al. Part-crystalline part-liquid state and rattling-like thermal damping in materials with chemical-bond hierarchy. Proc. Natl Acad. Sci. USA 111, 15031–15035 (2014).

    Article  CAS  Google Scholar 

  29. Lindemann, F. A. The calculation of molecular eigen-frequencies. Phys. Z. 11, 609–612 (1910).

    CAS  Google Scholar 

  30. Zhang, H., Wang, X., Yu, H. B. & Douglas, J. F. Fast dynamics in a model metallic glass-forming material. J. Chem. Phys. 154, 084505 (2021).

    Article  CAS  Google Scholar 

  31. Nelson, D. R. Order, frustration, and defects in liquids and glasses. Phys. Rev. B 28, 5515–5535 (1983).

    Article  CAS  Google Scholar 

  32. Miracle, D. B. A structural model for metallic glasses. Nat. Mater. 3, 697–702 (2004).

    Article  CAS  Google Scholar 

  33. Rouxel, T., Ji, H., Hammouda, T. & Moreac, A. Poisson’s ratio and the densification of glass under high pressure. Phys. Rev. Lett. 100, 4 (2008).

    Article  Google Scholar 

  34. Fan, Y., Iwashita, T. & Egami, T. How thermally activated deformation starts in metallic glass. Nat. Commun. 5, 5083 (2014).

    Article  CAS  Google Scholar 

  35. Middlemiss, R. P. et al. Measurement of the Earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016).

    Article  CAS  Google Scholar 

  36. Ghadimi, A. H. et al. Elastic strain engineering for ultralow mechanical dissipation. Science 360, aar6939 (2018).

    Article  Google Scholar 

  37. Ma, E. Tuning order in disorder. Nat. Mater. 14, 547–552 (2015).

    Article  CAS  Google Scholar 

  38. Wu, Y. et al. Substantially enhanced plasticity of bulk metallic glasses by densifying local atomic packing. Nat. Commun. 12, 6582 (2021).

    Article  CAS  Google Scholar 

  39. Ma, J. et al. Fast surface dynamics enabled cold joining of metallic glasses. Sci. Adv. 5, eaax7256 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 52192600 (H.Y.B.), 61888102 (H.Y.B.), 11790291 (H.Y.B.), 52031016 (M.Z.L.), 51631003 (M.Z.L.)), the Natural Science Foundation of Guangdong Province (2019B030302010 (H.Y.B.)), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB30000000 (H.Y.B.)), the National Key Research and Development Plan (2018YFA0703603 (H.Y.B.)) and the China Postdoctoral Science Foundation (2020TQ0346 (F.C.L.), 2021M693372 (H.P.Z.)). We thank W. H. Wang for discussions.

Author information

Authors and Affiliations

Authors

Contributions

H.Y.B., M.Z.L. and R.Z. conceived the idea and designed the research. C.C. and R.Z. prepared the samples and conducted the DMA experiments. C.C. and F.C.L. performed the nanoindentation experiments. H.P.Z. and M.Z.L. performed numerical simulations. All authors analysed and reviewed the results, and participated in writing the paper. H.Y.B. supervised the project.

Corresponding author

Correspondence to H. Y. Bai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Discussion and Tables 1–4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, C., Zhang, H.P., Zhao, R. et al. Liquid-like atoms in dense-packed solid glasses. Nat. Mater. 21, 1240–1245 (2022). https://doi.org/10.1038/s41563-022-01327-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01327-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing