Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures

Abstract

Nanoscale periodic moiré patterns, for example those formed at the interface of a twisted bilayer of two-dimensional materials, provide opportunities for engineering the electronic properties of van der Waals heterostructures1,2,3,4,5,6,7,8,9,10,11. In this work, we synthesized the epitaxial heterostructure of 1T-TiTe2/1T-TiSe2 with various twist angles using molecular beam epitaxy and investigated the moiré pattern induced/enhanced charge density wave (CDW) states with scanning tunnelling microscopy. When the twist angle is near zero degrees, 2 × 2 CDW domains are formed in 1T-TiTe2, separated by 1 × 1 normal state domains, and trapped in the moiré pattern. The formation of the moiré-trapped CDW state is ascribed to the local strain variation due to atomic reconstruction. Furthermore, this CDW state persists at room temperature, suggesting its potential for future CDW-based applications. Such moiré-trapped CDW patterns were not observed at larger twist angles. Our study paves the way for constructing metallic twist van der Waals bilayers and tuning many-body effects via moiré engineering.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of the moiré pattern with twist angle for 1T-TiTe2/1T-TiSe2.
Fig. 2: Strong CDW state confined in moiré pattern at twisted angle near 0°.
Fig. 3: Distribution of the strain field in the moiré pattern near a 0° twist angle.
Fig. 4: DFT calculation of the distribution of the height and strain field near a 0° twist angle.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  CAS  Google Scholar 

  2. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  3. Dean, C. R. et al. Hofstadter’s butterfly and the fractal quantum Hall effect in moiré superlattices. Nature 497, 598–602 (2013).

    Article  CAS  Google Scholar 

  4. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  CAS  Google Scholar 

  5. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  6. Tong, Q. J. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2016).

    Article  Google Scholar 

  7. Wu, F., Lovorn, T. & MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Article  Google Scholar 

  8. Kim, K. et al. Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene. Proc. Natl Acad. Sci. USA 114, 3364–3369 (2017).

    Article  CAS  Google Scholar 

  9. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  CAS  Google Scholar 

  10. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  CAS  Google Scholar 

  11. Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  CAS  Google Scholar 

  12. Morosan, E. et al. Superconductivity in CuxTiSe2. Nat. Phys. 2, 544–550 (2006).

    Article  CAS  Google Scholar 

  13. Chen, P. et al. Charge density wave transition in single-layer titanium diselenide. Nat. Commun. 6, 8943 (2015).

    Article  CAS  Google Scholar 

  14. Fazekas, P. & Tosatti, E. Electrical, structural and magnetic properties of pure and doped 1T-TaS2. Philos. Mag. B 39, 229–244 (1979).

    Article  CAS  Google Scholar 

  15. Zhang, K. W. et al. Unveiling the charge density wave inhomogeneity and pseudogap state in 1T-TiSe2. Sci. Bull. 63, 426–432 (2018).

    Article  CAS  Google Scholar 

  16. Chen, P. et al. Emergence of charge density waves and a pseudogap in single-layer TiTe2. Nat. Commun. 8, 516 (2017).

    Article  CAS  Google Scholar 

  17. Weston, A. et al. Atomic reconstruction in twisted bilayers of transition metal dichalcogenides. Nat. Nanotechnol. 15, 592–597 (2020).

    Article  CAS  Google Scholar 

  18. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  CAS  Google Scholar 

  19. Yao, Q. et al. Charge transfer effects in naturally occurring van der Waals heterostructures (PbSe)1.16(TiSe2)m (m = 1, 2). Phys. Rev. Lett. 120, 106401 (2018).

    Article  CAS  Google Scholar 

  20. Lin, M. K. et al. Charge instability in single-layer TiTe2 mediated by van der Waals bonding to substrates. Phys. Rev. Lett. 125, 176405 (2020).

    Article  CAS  Google Scholar 

  21. Guster, B., Robles, R., Pruneda, M., Canadell, E. & Ordejón, P. 2 × 2 charge density wave in single-layer TiTe2. 2D Mater. 6, 015027 (2018).

    Article  Google Scholar 

  22. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  23. Lawler, M. J. et al. Intra-unit-cell electronic nematicity of the high-Tc copper-oxide pseudogap states. Nature 466, 347–351 (2010).

    Article  CAS  Google Scholar 

  24. Walkup, D. et al. Interplay of orbital effects and nanoscale strain in topological crystalline insulators. Nat. Commun. 9, 1550 (2018).

    Article  Google Scholar 

  25. Woods, C. R. et al. Commensurate–incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451–456 (2014).

    Article  CAS  Google Scholar 

  26. Rosenberger, M. R. et al. Twist angle-dependent atomic reconstruction and moiré patterns in transition metal dichalcogenide heterostructures. ACS Nano 14, 4550–4558 (2020).

    Article  CAS  Google Scholar 

  27. Ritschel, T. et al. Orbital textures and charge density waves in transition metal dichalcogenides. Nat. Phys. 11, 328–331 (2015).

    Article  CAS  Google Scholar 

  28. Lee, S.-H., Goh, J. S. & Cho, D. Origin of the insulating phase and first-order metal-insulator transition in 1T−TaS2. Phys. Rev. Lett. 122, 106404 (2019).

    Article  CAS  Google Scholar 

  29. Stahl, Q. et al. Collapse of layer dimerization in the photo-induced hidden state of 1T-TaS2. Nat. Commun. 11, 1247 (2020).

    Article  CAS  Google Scholar 

  30. Lin, M. K. et al. Coherent electronic band structure of TiTe2/TiSe2 moiré bilayer. ACS Nano 15, 3359–3364 (2021).

    Article  CAS  Google Scholar 

  31. Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. J. Phys. Condens. Matter 6, 8245–8257 (1994).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  33. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  CAS  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  35. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  36. Medeiros, P. V. C., Stafström, S. & Björk, J. Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: retaining an effective primitive cell band structure by band unfolding. Phys. Rev. B 89, 041407(R) (2014).

    Article  Google Scholar 

  37. Medeiros, P. V. C., Tsirkin, S. S., Stafström, S. & Björk, J. Unfolding spinor wave functions and expectation values of general operators: introducing the unfolding-density operator. Phys. Rev. B 91, 041116(R) (2015).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China. W.-M.Z., L.Z., Q.-Y.L., Q.-W.W., L.-G.D., J.-G.H. and S.-C.L. acknowledge the National Natural Science Foundation of China (grant nos 11774149 and 11790311). Z.N. and S.M. acknowledge the National Natural Science Foundation of China (grant nos 91850120, 11774328 and 11934003) and the Chinese Academy of Sciences (XDB330301).

Author information

Authors and Affiliations

Authors

Contributions

S.-C.L. conceived the project and designed the experiments. W.-M.Z. and L.Z. grew the epitaxial TiTe2/TiSe2 heterostructures and performed STM characterizations with the assistance of Q.-Y.L., Q.-W.W., L.-G.D. and J.-G.H.; S.-C.L. supervised the MBE growth and STM characterization. Z.N. performed the DFT calculations under the supervision of L.X. and S.M.; W.-M.Z., L.Z. and S.-C.L. wrote the manuscript with input and comments from all the authors.

Corresponding authors

Correspondence to Sheng Meng or Shao-Chun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Jonas Bekaert and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Notes 1–4 and refs. 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, WM., Zhu, L., Nie, Z. et al. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 21, 284–289 (2022). https://doi.org/10.1038/s41563-021-01167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01167-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing