Electrochemical methods for determining ionic charge in solids

Classical experiments from solid-state electrochemistry can be used to determine the charge of ions in solids. This Comment also clarifies how the charge of point defects fits with the standard picture of ionic charge, and highlights differences between these electrochemical experiments and methods that probe electrons directly.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Two electrochemical experiments to determine the ionic charge.

References

  1. 1.

    Walsh, A., Sokol, A. A., Buckeridge, J., Scanlon, D. O. & Catlow, C. R. A. Nat. Mater. 17, 958–964 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Faraday, M. Trans. Roy. Soc. London 124, 77–122 (1834).

    Article  Google Scholar 

  3. 3.

    Nernst, W. Z. Phys. Chem. 4, 129–181 (1889).

    Google Scholar 

  4. 4.

    Schottky, W. & Wagner, C. Z. Phys. Chem. B 11, 163–210 (1930).

    Google Scholar 

  5. 5.

    Kröger, F. A. & Vink, H. J. Solid State Phys. 3, 307–435 (1956).

    Article  Google Scholar 

  6. 6.

    Brouwer, G. Philips Res. Rep. 9, 366–376 (1954).

    CAS  Google Scholar 

  7. 7.

    Stuhrmann, C. H. J., Kreiterling, H. & Funke, K. Phys. Chem. Chem. Phys. 3, 2557–2558 (2001).

    CAS  Article  Google Scholar 

  8. 8.

    Rickert, H. Electrochemistry of Solids (Springer, 1982).

  9. 9.

    Kiukkola, K. & Wagner, C. J. Electrochem. Soc. 104, 379–387 (1957).

    Article  Google Scholar 

  10. 10.

    Park, J.-H. & Blumenthal, R. N. J. Electrochem. Soc. 136, 2867–2876 (1989).

    CAS  Article  Google Scholar 

  11. 11.

    Weissbart, J. & Ruka, R. J. Electrochem. Soc. 109, 723–726 (1962).

    CAS  Article  Google Scholar 

  12. 12.

    Fouletier, J., Vitter, G. & Kleitz, M. J. Appl. Electrochem. 5, 111–120 (1975).

    CAS  Article  Google Scholar 

  13. 13.

    Laidler, K. J. The World of Physical Chemistry (Oxford Univ. Press, 1995).

  14. 14.

    Lee, D.-K. & Yoo, H.-I. Phys. Rev. Lett. 97, 255901 (2006).

    Article  Google Scholar 

  15. 15.

    Schmalzried, H. Z. Elektrochem. 66, 572–576 (1962).

    CAS  Google Scholar 

  16. 16.

    Zacherle, T., Schriever, A., De Souza, R. A. & Martin, M. Phys. Rev. B 87, 134104 (2013).

    Article  Google Scholar 

  17. 17.

    Dieckmann, R. Z. Phys. Chem. 107, 189–210 (1977).

    CAS  Google Scholar 

  18. 18.

    Hoshino, K. & Peterson, N. L. J. Am. Ceram. Soc. 66, c202–c203 (1983).

    CAS  Article  Google Scholar 

  19. 19.

    Fujimori, A. et al. J. Electron Spectrosc. Relat. Phenom. 124, 127–138 (2002).

    CAS  Article  Google Scholar 

  20. 20.

    Morikawa, K., Mizokawa, T., Fujimori, A., Taguchi, Y. & Tokura, Y. Phys Rev. B 54, 8446–8451 (1996).

    CAS  Article  Google Scholar 

  21. 21.

    Chang, C. F. et al. Phys. Rev. X 8, 021004 (2018).

    CAS  Google Scholar 

  22. 22.

    Wadati, H. et al. Phys. Rev. B 71, 035108 (2005).

    Article  Google Scholar 

  23. 23.

    Abbate, M. et al. Phys. Rev. B 46, 4511–4519 (1992).

    CAS  Article  Google Scholar 

  24. 24.

    Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Nat. Commun. 6, 6097 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Jansen, M. & Wedig, U. Angew. Chem. Int. Ed. 47, 10026–10029 (2008).

    CAS  Article  Google Scholar 

  26. 26.

    Choi, G. M., Tuller, H. L. & Goldschmidt, D. Phys. Rev. B 34, 6972–6979 (1986).

    CAS  Article  Google Scholar 

  27. 27.

    Søgaard, M., Vang Hendriksen, P. & Mogensen, M. J. Solid State Chem. 180, 1489–1503 (2007).

    Article  Google Scholar 

  28. 28.

    Lübke, S. & Wiemhöfer, H.-D. Ber. Bunsenges. Phys. Chem. 102, 642–649 (1998).

    Article  Google Scholar 

  29. 29.

    Bredesen, R. & Kofstad, P. Solid State Ion. 27, 11–18 (1988).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

R.A.D. acknowledges discussions with M. Martin. R.A.D. gratefully acknowledges support from the DFG (German Research Foundation) within the framework of the collaborative research centre ‘Nanoswitches’ (SFB 917) and D.N.M. gratefully acknowledges support by the Juelich Joint Redox Lab (JJRL).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Roger A. De Souza or David N. Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Souza, R.A., Mueller, D.N. Electrochemical methods for determining ionic charge in solids. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0790-9

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing