Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Electrochemical methods for determining ionic charge in solids

Classical experiments from solid-state electrochemistry can be used to determine the charge of ions in solids. This Comment also clarifies how the charge of point defects fits with the standard picture of ionic charge, and highlights differences between these electrochemical experiments and methods that probe electrons directly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two electrochemical experiments to determine the ionic charge.

References

  1. Walsh, A., Sokol, A. A., Buckeridge, J., Scanlon, D. O. & Catlow, C. R. A. Nat. Mater. 17, 958–964 (2018).

    Article  CAS  Google Scholar 

  2. Faraday, M. Trans. Roy. Soc. London 124, 77–122 (1834).

    Article  Google Scholar 

  3. Nernst, W. Z. Phys. Chem. 4, 129–181 (1889).

    Google Scholar 

  4. Schottky, W. & Wagner, C. Z. Phys. Chem. B 11, 163–210 (1930).

    Google Scholar 

  5. Kröger, F. A. & Vink, H. J. Solid State Phys. 3, 307–435 (1956).

    Article  Google Scholar 

  6. Brouwer, G. Philips Res. Rep. 9, 366–376 (1954).

    CAS  Google Scholar 

  7. Stuhrmann, C. H. J., Kreiterling, H. & Funke, K. Phys. Chem. Chem. Phys. 3, 2557–2558 (2001).

    Article  CAS  Google Scholar 

  8. Rickert, H. Electrochemistry of Solids (Springer, 1982).

  9. Kiukkola, K. & Wagner, C. J. Electrochem. Soc. 104, 379–387 (1957).

    Article  Google Scholar 

  10. Park, J.-H. & Blumenthal, R. N. J. Electrochem. Soc. 136, 2867–2876 (1989).

    Article  CAS  Google Scholar 

  11. Weissbart, J. & Ruka, R. J. Electrochem. Soc. 109, 723–726 (1962).

    Article  CAS  Google Scholar 

  12. Fouletier, J., Vitter, G. & Kleitz, M. J. Appl. Electrochem. 5, 111–120 (1975).

    Article  CAS  Google Scholar 

  13. Laidler, K. J. The World of Physical Chemistry (Oxford Univ. Press, 1995).

  14. Lee, D.-K. & Yoo, H.-I. Phys. Rev. Lett. 97, 255901 (2006).

    Article  Google Scholar 

  15. Schmalzried, H. Z. Elektrochem. 66, 572–576 (1962).

    CAS  Google Scholar 

  16. Zacherle, T., Schriever, A., De Souza, R. A. & Martin, M. Phys. Rev. B 87, 134104 (2013).

    Article  Google Scholar 

  17. Dieckmann, R. Z. Phys. Chem. 107, 189–210 (1977).

    CAS  Google Scholar 

  18. Hoshino, K. & Peterson, N. L. J. Am. Ceram. Soc. 66, c202–c203 (1983).

    Article  CAS  Google Scholar 

  19. Fujimori, A. et al. J. Electron Spectrosc. Relat. Phenom. 124, 127–138 (2002).

    Article  CAS  Google Scholar 

  20. Morikawa, K., Mizokawa, T., Fujimori, A., Taguchi, Y. & Tokura, Y. Phys Rev. B 54, 8446–8451 (1996).

    Article  CAS  Google Scholar 

  21. Chang, C. F. et al. Phys. Rev. X 8, 021004 (2018).

    CAS  Google Scholar 

  22. Wadati, H. et al. Phys. Rev. B 71, 035108 (2005).

    Article  Google Scholar 

  23. Abbate, M. et al. Phys. Rev. B 46, 4511–4519 (1992).

    Article  CAS  Google Scholar 

  24. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Nat. Commun. 6, 6097 (2015).

    Article  CAS  Google Scholar 

  25. Jansen, M. & Wedig, U. Angew. Chem. Int. Ed. 47, 10026–10029 (2008).

    Article  CAS  Google Scholar 

  26. Choi, G. M., Tuller, H. L. & Goldschmidt, D. Phys. Rev. B 34, 6972–6979 (1986).

    Article  CAS  Google Scholar 

  27. Søgaard, M., Vang Hendriksen, P. & Mogensen, M. J. Solid State Chem. 180, 1489–1503 (2007).

    Article  Google Scholar 

  28. Lübke, S. & Wiemhöfer, H.-D. Ber. Bunsenges. Phys. Chem. 102, 642–649 (1998).

    Article  Google Scholar 

  29. Bredesen, R. & Kofstad, P. Solid State Ion. 27, 11–18 (1988).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

R.A.D. acknowledges discussions with M. Martin. R.A.D. gratefully acknowledges support from the DFG (German Research Foundation) within the framework of the collaborative research centre ‘Nanoswitches’ (SFB 917) and D.N.M. gratefully acknowledges support by the Juelich Joint Redox Lab (JJRL).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roger A. De Souza or David N. Mueller.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Souza, R.A., Mueller, D.N. Electrochemical methods for determining ionic charge in solids. Nat. Mater. 20, 443–446 (2021). https://doi.org/10.1038/s41563-020-0790-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0790-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing