Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide

A Publisher Correction to this article was published on 18 February 2021

A Publisher Correction to this article was published on 14 September 2020

This article has been updated

Abstract

Utilizing quantum effects in complex oxides, such as magnetism, multiferroicity and superconductivity, requires atomic-level control of the material’s structure and composition. In contrast, the continuous conductivity changes that enable artificial oxide-based synapses and multiconfigurational devices are driven by redox reactions and domain reconfigurations, which entail long-range ionic migration and changes in stoichiometry or structure. Although both concepts hold great technological potential, combined applications seem difficult due to the mutually exclusive requirements. Here we demonstrate a route to overcome this limitation by controlling the conductivity in the functional oxide hexagonal Er(Mn,Ti)O3 by using conductive atomic force microscopy to generate electric-field induced anti-Frenkel defects, that is, charge-neutral interstitial–vacancy pairs. These defects are generated with nanoscale spatial precision to locally enhance the electronic hopping conductivity by orders of magnitude without disturbing the ferroelectric order. We explain the non-volatile effects using density functional theory and discuss its universality, suggesting an alternative dimension to functional oxides and the development of multifunctional devices for next-generation nanotechnology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Local conductance control in h-Er(Mn,Ti)O3.
Fig. 2: Morphology and structure of electric-field-induced conducting features.
Fig. 3: Comparison of the electronic structure in as-grown and electrically modified regions.
Fig. 4: Anti-Frenkel defects and electronic DOS.

Data availability

Computer codes used for simulations and data evaluation are available from the sources cited; data in formats other than those presented within this paper are available from the corresponding authors upon request.

Change history

References

  1. 1.

    Seok Jeong, D., Kim, I., Ziegler, M. & Kohlstedt, H. Towards artificial neurons and synapses: a materials point of view. RSC Adv. 3, 3169–3183 (2013).

    Google Scholar 

  2. 2.

    Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Google Scholar 

  3. 3.

    Del Valle, J., Ramírez, J. G., Rozenberg, M. J. & Schuller, I. K. Challenges in materials and devices for resistive-switching-based neuromorphic computing. J. Appl. Phys. 124, 211101 (2018).

    Google Scholar 

  4. 4.

    Chanthbouala, A. et al. A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012).

    CAS  Google Scholar 

  5. 5.

    Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  6. 6.

    Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Google Scholar 

  7. 7.

    Lee, J. S., Lee, S. & Noh, T. W. Resistive switching phenomena: a review of statistical physics approaches. Appl. Phys. Rev. 2, 31303 (2015).

    Google Scholar 

  8. 8.

    Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nat. Mater. 7, 298–302 (2008).

    CAS  Google Scholar 

  9. 9.

    Du, N. et al. Field-driven hopping transport of oxygen vacancies in memristive oxide switches with interface-mediated resistive switching. Phys. Rev. Appl. 10, 54025 (2018).

    CAS  Google Scholar 

  10. 10.

    Wang, X. et al. Anisotropic resistance switching in hexagonal manganites. Phys. Rev. B 99, 054106 (2019).

    CAS  Google Scholar 

  11. 11.

    Nagarajan, L. et al. A chemically driven insulator–metal transition in non-stoichiometric and amorphous gallium oxide. Nat. Mater. 7, 391–398 (2008).

    CAS  Google Scholar 

  12. 12.

    Cava, R. J. et al. Oxygen stoichiometry, superconductivity and normal-state properties of YBa2Cu3O7-δ. Nature 329, 423–425 (1987).

    CAS  Google Scholar 

  13. 13.

    Zhao, J. et al. Lattice and magnetic structures of PrFeAsO, PrFeAsO0.85F0.15, and PrFeAsO0.85. Phys. Rev. B 78, 132504 (2008).

    Google Scholar 

  14. 14.

    Kalinin, S. V., Jesse, S., Tselev, A., Baddorf, A. P. & Balke, N. The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. ACS Nano 5, 5683–5691 (2011).

    CAS  Google Scholar 

  15. 15.

    Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, 2004).

  16. 16.

    Kumar, A., Ciucci, F., Morozovska, A. N., Kalinin, S. V. & Jesse, S. Measuring oxygen reduction/evolution reactions on the nanoscale. Nat. Chem. 3, 707–713 (2011).

    CAS  Google Scholar 

  17. 17.

    Holstad, T. S. et al. Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3. Phys. Rev. B 97, 85143 (2018).

    CAS  Google Scholar 

  18. 18.

    Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex–antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

    CAS  Google Scholar 

  19. 19.

    Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

    Google Scholar 

  20. 20.

    Han, M.-G. et al. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite. Adv. Mater. 25, 2415–2421 (2013).

    CAS  Google Scholar 

  21. 21.

    Skjærvø, S. H. et al. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites. Nat. Commun. 7, 13745 (2016).

    Google Scholar 

  22. 22.

    Skjærvø, S. H., Småbråten, D. R., Spaldin, N. A., Tybell, T. & Selbach, S. M. Oxygen vacancies in the bulk and at neutral domain walls in hexagonal YMnO3. Phys. Rev. B 98, 184102 (2018).

    Google Scholar 

  23. 23.

    Remsen, S. & Dabrowski, B. Synthesis and oxygen storage capacities of hexagonal Dy1–xY xMnO3+δ. Chem. Mater. 23, 3818–3827 (2011).

    CAS  Google Scholar 

  24. 24.

    Bergum, K. et al. Synthesis, structure and magnetic properties of nanocrystalline YMnO3. Dalton Trans. 40, 7583–7589 (2011).

    CAS  Google Scholar 

  25. 25.

    Bi, F. et al. ‘Water-cycle’ mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 173110 (2010).

    Google Scholar 

  26. 26.

    Schaab, J. et al. Electrical half-wave rectification at ferroelectric domain walls. Nat. Nanotechnol. 13, 1028–1034 (2018).

    CAS  Google Scholar 

  27. 27.

    Katsufuji, T. et al. Dielectric and magnetic anomalies and spin frustration in hexagonal RMnO3 (R = Y, Yb, and Lu). Phys. Rev. B 64, 104419 (2001).

    Google Scholar 

  28. 28.

    Zhang, Q. H. et al. Direct observation of interlocked domain walls in hexagonal RMnO3 (R = Tm, Lu). Phys. Rev. B 85, 20102 (2012).

    Google Scholar 

  29. 29.

    Holtz, M. E. et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017).

    CAS  Google Scholar 

  30. 30.

    Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Google Scholar 

  31. 31.

    Artyukhin, S., Delaney, K. T., Spaldin, N. A. & Mostovoy, M. Landau theory of topological defects in multiferroic hexagonal manganites. Nat. Mater. 13, 42–49 (2013).

    Google Scholar 

  32. 32.

    Cano, A. Hidden order in hexagonal RMnO3 multiferroics (R = Dy, Lu, In, Y, and Sc). Phys. Rev. B 89, 214107 (2014).

    Google Scholar 

  33. 33.

    Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).

    CAS  Google Scholar 

  34. 34.

    Tan, H., Verbeeck, J., Abakumov, A. & Van Tendeloo, G. Oxidation state and chemical shift investigation in transition metal oxides by EELS. Ultramicroscopy 116, 24–33 (2012).

    CAS  Google Scholar 

  35. 35.

    Nishida, S. et al. Effect of local coordination of Mn on Mn-L2,3 edge electron energy loss spectrum. J. Appl. Phys. 114, 54906 (2013).

    Google Scholar 

  36. 36.

    Loomer, D. B., Al, T. A., Weaver, L. & Cogswell, S. Manganese valence imaging in Mn minerals at the nanoscale using STEM-EELS. Am. Mineral. 92, 72–79 (2007).

    CAS  Google Scholar 

  37. 37.

    Garvie, L. A. J. & Craven, A. J. High-resolution parallel electron energy-loss spectroscopy of Mn L2,3-edges in inorganic manganese compounds. Phys. Chem. Miner. 21, 191–206 (1994).

    CAS  Google Scholar 

  38. 38.

    Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503–5513 (2010).

    CAS  Google Scholar 

  39. 39.

    Overton, A. J., Best, J. L., Saratovsky, I. & Hayward, M. A. Influence of topotactic reduction on the structure and magnetism of the multiferroic YMnO3. Chem. Mater. 21, 4940–4948 (2009).

    CAS  Google Scholar 

  40. 40.

    Griffin, S. M., Reidulff, M., Selbach, S. M. & Spaldin, N. A. Defect chemistry as a crystal structure design parameter: intrinsic point defects and Ga substitution in InMnO3. Chem. Mater. 29, 2425–2434 (2017).

    CAS  Google Scholar 

  41. 41.

    Zhang, X., Zhang, Y., Yue, Z. & Zhang, J. Influences of sintering atmosphere on the magnetic and electrical properties of barium hexaferrites. AIP Adv. 9, 085129 (2019).

    Google Scholar 

  42. 42.

    Keeton, S. C. & Wilson, W. D. Vacancies, interstitials, and rare gases in fluorite structures. Phys. Rev. B 7, 834–843 (1973).

    CAS  Google Scholar 

  43. 43.

    Boulahya, K., Muñoz-Gil, D., Gómez-Herrero, A., Azcondo, M. T. & Amador, U. Eu2SrCo1.5Fe0.5O7 a new promising Ruddlesden–Popper member as a cathode component for intermediate temperature solid oxide fuel cells. J. Mater. Chem. A 7, 5601–5611 (2019).

    CAS  Google Scholar 

  44. 44.

    Yan, Z. et al. Growth of high-quality hexagonal ErMnO3 single crystals by the pressurized floating-zone method. J. Cryst. Growth 409, 75–79 (2015).

    CAS  Google Scholar 

  45. 45.

    Jones, L. et al. Smart Align—a new tool for robust non-rigid registration of scanning microscope data. Adv. Struct. Chem. Imag. 1, 8 (2015).

    Google Scholar 

  46. 46.

    Nord, M., Vullum, P. E., MacLaren, I., Tybell, T. & Holmestad, R. Atomap: a new software tool for the automated analysis of atomic resolution images using two-dimensional Gaussian fitting. Adv. Struct. Chem. Imag. 3, 9 (2017).

    Google Scholar 

  47. 47.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  50. 50.

    Medvedeva, J. E., Anisimov, V. I., Korotin, M. A., Mryasov, O. N. & Freeman, A. J. Effect of Coulomb correlation and magnetic ordering on the electronic structure of two hexagonal phases of ferroelectromagnetic YMnO3. J. Phys. Condens. Matter 12, 4947–4958 (2001).

    Google Scholar 

  51. 51.

    Gibbs, A. S., Knight, K. S. & Lightfoot, P. High-temperature phase transitions of hexagonal YMnO3. Phys. Rev. B 83, 94111 (2011).

    Google Scholar 

  52. 52.

    Degenhardt, C., Fiebig, M., Fröhlich, D., Lottermoser, T. & Pisarev, R. V. V. Nonlinear optical spectroscopy of electronic transitions in hexagonal manganites. Appl. Phys. B 73, 139–144 (2001).

    CAS  Google Scholar 

  53. 53.

    Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  54. 54.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    CAS  Google Scholar 

  55. 55.

    Murphy, S. T. & Hine, N. D. M. Anisotropic charge screening and supercell size convergence of defect formation energies. Phys. Rev. B 87, 94111 (2013).

    Google Scholar 

  56. 56.

    Rehr, J. J. et al. Ab initio theory and calculations of X-ray spectra. C.R. Phys. 10, 548–559 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Grande for fruitful discussions. D.R.S. and S.M.S. were supported by the Research Council of Norway (project no. 231430/F20 and 275139) and acknowledge UNINETT Sigma2 (project no. NN9264K and ntnu243) for providing the computational resources. A.B.M. was supported by NTNU’s Enabling technologies: Nanotechnology. The Research Council of Norway is acknowledged for the support to the Norwegian Micro- and Nano-Fabrication Facility, NorFab, project no. 245963/F50 and Norwegian Centre for Transmission Electron Microscopy, NORTEM, Grant no. 197405. A.L.D. was funded by the Norwegian Research Council under project no. 274459 Translate. K.S. acknowledges the support of the European Research Council under the European Union’s Horizon 2020 research and innovation program (grant agreement no. 724529), Ministerio de Economia, Industria y Competitividad through grant nos. MAT2016-77100-C2-2-P and SEV-2015-0496, and the Generalitat de Catalunya (grant no. 2017SGR 1506). Z.Y. and E.B. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 within the Quantum Materials program KC2202. J.A. was supported by the Academy of Finland under project no. 322832. D.M. thanks NTNU for support through the Onsager Fellowship Programme and NTNU Stjerneprogrammet.

Author information

Affiliations

Authors

Contributions

D.M.E. coordinated the project and led the scanning probe microscopy work together with T.S.H., both supervised by D.M. A.B.M. conducted the FIB and SEM work under the supervision of A.T.J.v.H. P.E.V., A.T.J.v.H and A.B.M. conducted the TEM and, together with T.S.H. and D.M.E. analysed the TEM and EELS data. D.R.S. performed the DFT calculations and A.L.D. simulated the EELS spectra supervised by S.M.S. and J.T., respectively. DF-MD calculations were performed by D.G., J.A., D.R.S. and S.M.S. K.S. modelled the defect segregation in electric fields. Z.Y. and E.B. provided the materials and D.G. and J.A. supported the study with image charge and potential alignment correction simulations for charged defects in periodic boundary conditions. D.M.E. and D.M. wrote the manuscript. All the authors discussed the results and contributed to the final version of the manuscript.

Corresponding authors

Correspondence to Donald M. Evans or Dennis Meier.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Notes 1–3, and references 1–11.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Evans, D.M., Holstad, T.S., Mosberg, A.B. et al. Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide. Nat. Mater. 19, 1195–1200 (2020). https://doi.org/10.1038/s41563-020-0765-x

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing