Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ferroelectric domain walls for nanotechnology

Abstract

Ferroelectric domain walls have emerged as a new type of interface in which the dynamic characteristics of ferroelectricity introduce the element of spatial mobility, allowing real-time adjustment of position, density and orientation of the walls. Because of electronic confinement, and of their distinct symmetry and chemical environment, the spatially mobile domain walls offer a wide range of functional electric and magnetic properties, representing excellent 2D components for the development of more agile next-generation nanotechnology. In this Review, we discuss how the field of domain-wall nanoelectronics evolved from classical device ideas to advanced concepts for multilevel resistance control in memristive and synaptic devices. Recent advances in modelling and atomic-scale characterization provide insight into the interaction of ferroelectric domain walls and point defects, offering additional routes for local property design. We also explore the discovery of functional domain walls in improper ferroelectrics and the intriguing possibility of developing the walls themselves into ultra-small electronic components, controlling electronic signals through their intrinsic physical properties. We conclude with a discussion of open experimental challenges and newly discovered domain-wall phenomena that may play an important role in future directions of the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classical concepts for nanoelectronics based on domain walls.
Fig. 2: Functionality enabled by domain-wall/point-defect interactions.
Fig. 3: Conducting domain walls in improper ferroelectrics.
Fig. 4: Emulating the behaviour of electronic components with ferroelectric domain walls.

Similar content being viewed by others

References

  1. Mannhart, J. & Schlom, D. G. Oxide interfaces — an opportunity for electronics. Science 327, 1607–1611 (2010).

    CAS  Google Scholar 

  2. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  3. Kroemer, H. Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    CAS  Google Scholar 

  4. The interface is still the device. Nat. Mater. 11, 91 (2012).

  5. Ziese, M. & Thornton, M. J. Spin Electronics (Springer, 2001).

  6. Back, C. et al. The 2020 skyrmionics roadmap. J. Phys. Appl. Phys. 53, 363001 (2020).

    CAS  Google Scholar 

  7. Varignon, J., Vila, L., Barthélémy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018).

    CAS  Google Scholar 

  8. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 1–15 (2017).

    Google Scholar 

  9. Stemmer, S. & James Allen, S. Two-dimensional electron gases at complex oxide Interfaces. Annu. Rev. Mater. Res. 44, 151–171 (2014).

    CAS  Google Scholar 

  10. Ramesh, R. & Schlom, D. G. Creating emergent phenomena in oxide superlattices. Nat. Rev. Mater. 4, 257–268 (2019).

    Google Scholar 

  11. Meier, D., Seidel, J., Gregg, M. & Ramesh, R. Domain Walls: From Fundamental Properties to Nanotechnology Concepts (Oxford Univ. Press, 2020).

  12. Aird, A. & Salje, E. K. H. Sheet superconductivity in twin walls: experimental evidence of. J. Phys. Condens. Matter 10, L377–L380 (1998).

    CAS  Google Scholar 

  13. Aird, A., Domeneghetti, M. C., Mazzi, F., Tazzoli, V. & Salje, E. K. H. Sheet superconductivity in WO3−x: crystal structure of the tetragonal matrix. J. Phys. Condens. Matter 10, L569–L574 (1998).

    CAS  Google Scholar 

  14. Tagantsev, A., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films (Springer, 2010).

  15. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010).

    CAS  Google Scholar 

  16. Aert, S. V. et al. Direct observation of ferrielectricity at ferroelastic domain boundaries in CaTiO3 by electron microscopy. Adv. Mater. 24, 523–527 (2012).

    Google Scholar 

  17. Geng, Y., Lee, N., Choi, Y. J., Cheong, S.-W. & Wu, W. Collective magnetism at multiferroic vortex domain walls. Nano Lett. 12, 6055–6059 (2012).

    CAS  Google Scholar 

  18. Nataf, G. F. et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials. Nat. Rev. Phys. 2, 634–648 (2020).

    CAS  Google Scholar 

  19. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012).

    CAS  Google Scholar 

  20. Meier, D. Functional domain walls in multiferroics. J. Phys. Condens. Matter 27, 463003 (2015).

    Google Scholar 

  21. Bednyakov, P. S., Sturman, B. I., Sluka, T., Tagantsev, A. K. & Yudin, P. V. Physics and applications of charged domain walls. Npj Comput. Mater. 4, 65 (2018).

    Google Scholar 

  22. Sharma, P., Schoenherr, P. & Seidel, J. Functional ferroic domain walls for nanoelectronics. Materials 12, 2927 (2019).

    CAS  Google Scholar 

  23. Evans, D. M., Garcia, V., Meier, D. & Bibes, M. Domains and domain walls in multiferroics. Phys. Sci. Rev. https://doi.org/10.1515/psr-2019-0067 (2020).

    Article  Google Scholar 

  24. Jiang, A. Q. & Zhang, Y. Next-generation ferroelectric domain-wall memories: principle and architecture. NPG Asia Mater. 11, 2 (2019).

    Google Scholar 

  25. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8, 229–234 (2009).

    CAS  Google Scholar 

  26. Dvořák, V. Improper ferroelectrics. Ferroelectrics 7, 1–9 (1974).

    Google Scholar 

  27. Levanyuk, A. P. & Sannikov, D. G. Improper ferroelectrics. Sov. Phys. Uspekhi 17, 199 (1974).

    Google Scholar 

  28. Vul, B. M., Guro, G. M. & Ivanchik, I. I. Encountering domains in ferroelectrics. Ferroelectrics 6, 29–31 (1973).

    CAS  Google Scholar 

  29. Merz, W. J. Double hysteresis loop of BaTiO3 at the Curie point. Phys. Rev. 91, 513–517 (1953).

    CAS  Google Scholar 

  30. Sluka, T., Tagantsev, A. K., Damjanovic, D., Gureev, M. & Setter, N. Enhanced electromechanical response of ferroelectrics due to charged domain walls. Nat. Commun. 3, 748 (2012).

    Google Scholar 

  31. Sluka, T., Tagantsev, A. K., Bednyakov, P. & Setter, N. Free-electron gas at charged domain walls in insulating BaTiO3. Nat. Commun. 4, 1808 (2013).

    Google Scholar 

  32. Eliseev, E. A., Morozovska, A. N., Svechnikov, G. S., Gopalan, V. & Shur, V. Y. Static conductivity of charged domain walls in uniaxial ferroelectric semiconductors. Phys. Rev. B 83, 235313 (2011).

    Google Scholar 

  33. Gureev, M. Y., Tagantsev, A. K. & Setter, N. Head-to-head and tail-to-tail 180° domain walls in an isolated ferroelectric. Phys. Rev. B 83, 184104 (2011).

    Google Scholar 

  34. Bihan, R. L. Study of ferroelectric and ferroelastic domain structures by scanning electron microscopy. Ferroelectrics 97, 19–46 (1989).

    Google Scholar 

  35. Aristov, V. V., Kokhanchik, L. S. & Voronovskii, Y. I. Voltage contrast of ferroelectric domains of lithium niobate in SEM. Phys. Status Solidi A 86, 133–141 (1984).

    CAS  Google Scholar 

  36. Schröder, M. et al. Conducting domain walls in lithium niobate single crystals. Adv. Funct. Mater. 22, 3936–3944 (2012).

    Google Scholar 

  37. Werner, C. S. et al. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 7, 9862 (2017).

    Google Scholar 

  38. Seidel, J. et al. Domain wall conductivity in La-doped BiFeO3. Phys. Rev. Lett. 105, 197603 (2010).

    CAS  Google Scholar 

  39. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 thin films. Phys. Rev. Lett. 107, 127601 (2011).

    CAS  Google Scholar 

  40. Zhang, Y. et al. Intrinsic conductance of domain walls in BiFeO3. Adv. Mater. 31, 1902099 (2019).

    Google Scholar 

  41. Maksymovych, P. et al. Dynamic conductivity of ferroelectric domain walls in BiFeO3. Nano Lett. 11, 1906–1912 (2011).

    CAS  Google Scholar 

  42. Chiu, Y.-P. et al. Atomic-scale evolution of local electronic structure across multiferroic domain walls. Adv. Mater. 23, 1530–1534 (2011).

    CAS  Google Scholar 

  43. Vasudevan, R. K. et al. Domain wall geometry controls conduction in ferroelectrics. Nano Lett. 12, 5524–5531 (2012).

    CAS  Google Scholar 

  44. Guyonnet, J., Gaponenko, I., Gariglio, S. & Paruch, P. Conduction at domain walls in insulating Pb(Zr0.2Ti0.8)O3 thin films. Adv. Mater. 23, 5377–5382 (2011).

    CAS  Google Scholar 

  45. Gaponenko, I., Tückmantel, P., Karthik, J., Martin, L. W. & Paruch, P. Towards reversible control of domain wall conduction in Pb(Zr0.2Ti0.8)O3 thin films. Appl. Phys. Lett. 106, 162902 (2015).

    Google Scholar 

  46. Maksymovych, P. et al. Tunable metallic conductance in ferroelectric nanodomains. Nano Lett. 12, 209–213 (2012).

    CAS  Google Scholar 

  47. Stolichnov, I. et al. Bent ferroelectric domain walls as reconfigurable metallic-like channels. Nano Lett. 15, 8049–8055 (2015).

    CAS  Google Scholar 

  48. Lindgren, G. & Canalias, C. Domain wall conductivity in KTiOPO4 crystals. Apl. Mater. 5, 076108 (2017).

    Google Scholar 

  49. Choi, T. et al. Insulating interlocked ferroelectric and structural antiphase domain walls in multiferroic YMnO3. Nat. Mater. 9, 253–258 (2010).

    CAS  Google Scholar 

  50. Meier, D. et al. Anisotropic conductance at improper ferroelectric domain walls. Nat. Mater. 11, 284–288 (2012).

    CAS  Google Scholar 

  51. Wu, W., Horibe, Y., Lee, N., Cheong, S.-W. & Guest, J. R. Conduction of topologically protected charged ferroelectric domain walls. Phys. Rev. Lett. 108, 077203 (2012).

    Google Scholar 

  52. Du, Y. et al. Domain wall conductivity in oxygen deficient multiferroic YMnO3 single crystals. Appl. Phys. Lett. 99, 252107 (2011).

    Google Scholar 

  53. Schaab, J. et al. Optimization of electronic domain-wall properties by aliovalent cation substitution. Adv. Electron. Mater. 2, 1500195 (2016).

    Google Scholar 

  54. Holstad, T. S. et al. Electronic bulk and domain wall properties in B-site doped hexagonal ErMnO3. Phys. Rev. B 97, 085143 (2018).

    CAS  Google Scholar 

  55. McQuaid, R. G. P., Campbell, M. P., Whatmore, R. W., Kumar, A. & Gregg, J. M. Injection and controlled motion of conducting domain walls in improper ferroelectric Cu-Cl boracite. Nat. Commun. 8, 15105 (2017).

    CAS  Google Scholar 

  56. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7 crystals. Nat. Mater. 14, 407–413 (2015).

    CAS  Google Scholar 

  57. Holstad, T. S. et al. Application of a long short-term memory for deconvoluting conductance contributions at charged ferroelectric domain walls. NPJ Comput. Mater. 6, 1–7 (2020).

    Google Scholar 

  58. Sluka, T. & Tagantsev, A. Electronic elements based on quasi two-dimensional electron/hole gas at charged domain walls in ferroelectrics. US Patent No. 9171602B2 (2014).

  59. Sharma, P. et al. Nonvolatile ferroelectric domain wall memory. Sci. Adv. 3, e1700512 (2017).

    Google Scholar 

  60. Sharma, P. et al. Conformational domain wall switch. Adv. Funct. Mater. 29, 1807523 (2019).

    Google Scholar 

  61. McConville, J. P. V. et al. Ferroelectric domain wall memristor. Adv. Funct. Mater. 30, 2000109 (2020).

    CAS  Google Scholar 

  62. Boyn, S. et al. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 8, 14736 (2017).

    CAS  Google Scholar 

  63. Oh, S., Hwang, H. & Yoo, I. K. Ferroelectric materials for neuromorphic computing. APL Mater. 7, 091109 (2019).

    Google Scholar 

  64. Marković, D., Mizrahi, A., Querlioz, D. & Grollier, J. Physics for neuromorphic computing. Nat. Rev. Phys. 2, 499–510 (2020).

    Google Scholar 

  65. Godau, C., Kämpfe, T., Thiessen, A., Eng, L. M. & Haußmann, A. Enhancing the domain wall conductivity in lithium niobate single crystals. ACS Nano 11, 4816–4824 (2017).

    CAS  Google Scholar 

  66. Lu, H. et al. Electrical tunability of domain wall conductivity in LiNbO3 thin films. Adv. Mater. 31, 1902890 (2019).

    CAS  Google Scholar 

  67. Chai, X. et al. Nonvolatile ferroelectric field-effect transistors. Nat. Commun. 11, 2811 (2020).

    CAS  Google Scholar 

  68. Li, L. et al. Giant resistive switching via control of ferroelectric charged domain walls. Adv. Mater. 28, 6574–6580 (2016).

    CAS  Google Scholar 

  69. Jiang, J. et al. Temporary formation of highly conducting domain walls for non-destructive read-out of ferroelectric domain-wall resistance switching memories. Nat. Mater. 17, 49–56 (2018).

    CAS  Google Scholar 

  70. Jiang, A. Q. et al. Ferroelectric domain wall memory with embedded selector realized in LiNbO3 single crystals integrated on Si wafers. Nat. Mater. 19, 1188–1194 (2020).

    CAS  Google Scholar 

  71. Schröder, M. et al. Nanoscale and macroscopic electrical ac transport along conductive domain walls in lithium niobate single crystals. Mater. Res. Express 1, 035012 (2014).

    Google Scholar 

  72. Wu, X. et al. Low-energy structural dynamics of ferroelectric domain walls in hexagonal rare-earth manganites. Sci. Adv. 3, e1602371 (2017).

    Google Scholar 

  73. Wu, X. et al. Microwave conductivity of ferroelectric domains and domain walls in a hexagonal rare-earth ferrite. Phys. Rev. B 98, 081409 (2018).

    CAS  Google Scholar 

  74. Tselev, A. et al. Microwave a.c. conductivity of domain walls in ferroelectric thin films. Nat. Commun. 7, 11630 (2016).

    CAS  Google Scholar 

  75. Huang, Y.-L. et al. Unexpected giant microwave conductivity in a nominally silent BiFeO3 domain wall. Adv. Mater. 32, 1905132 (2020).

    CAS  Google Scholar 

  76. Johnson, J. B. Thermal agitation of electricity in conductors. Phys. Rev. 32, 97–109 (1928).

    CAS  Google Scholar 

  77. Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    CAS  Google Scholar 

  78. Bhattacharya, K. & Sharma, R. Solid State Electronic Devices (Oxford Univ. Press, 1972).

  79. Turner, P. W. et al. Large carrier mobilities in ErMnO3 conducting domain walls revealed by quantitative Hall-effect measurements. Nano Lett. 18, 6381–6386 (2018).

    CAS  Google Scholar 

  80. Fortunato, E. et al. High field-effect mobility zinc oxide thin film transistors produced at room temperature. J. Noncryst. Solids 338–340, 806–809 (2004).

    Google Scholar 

  81. Kim, H. J. et al. High mobility in a stable transparent perovskite oxide. Appl. Phys. Express 5, 061102 (2012).

    Google Scholar 

  82. Huang, G., Duan, L., Dong, G., Zhang, D. & Qiu, Y. High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode. ACS Appl. Mater. Interfaces 6, 20786–20794 (2014).

    CAS  Google Scholar 

  83. Shih, C. W. & Chin, A. New material transistor with record-high field-effect mobility among wide-band-gap semiconductors. ACS Appl. Mater. Interfaces 8, 19187–19191 (2016).

    CAS  Google Scholar 

  84. Lee, J. H. et al. Spintronic functionality of BiFeO3 domain walls. Adv. Mater. 26, 7078–7082 (2014).

    CAS  Google Scholar 

  85. He, Q. et al. Magnetotransport at domain walls in BiFeO3. Phys. Rev. Lett. 108, 067203 (2012).

    CAS  Google Scholar 

  86. Domingo, N., Farokhipoor, S., Santiso, J., Noheda, B. & Catalan, G. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy. J. Phys. Condens. Matter 29, 334003 (2017).

    CAS  Google Scholar 

  87. Stefani, C. et al. Mechanical softness of ferroelectric 180° domain walls. Phys. Rev. X 10, 041001 (2020).

    CAS  Google Scholar 

  88. Ihlefeld, J. F. et al. Room-temperature voltage tunable phonon thermal conductivity via reconfigurable interfaces in ferroelectric thin films. Nano Lett. 15, 1791–1795 (2015).

    CAS  Google Scholar 

  89. Seijas-Bellido, J. A. et al. A phononic switch based on ferroelectric domain walls. Phys. Rev. B 96, 140101 (2017).

    Google Scholar 

  90. Langenberg, E. et al. Ferroelectric domain walls in PbTiO3 are effective regulators of heat flow at room temperature. Nano Lett. 19, 7901–7907 (2019).

    CAS  Google Scholar 

  91. Royo, M., Escorihuela-Sayalero, C., Íñiguez, J. & Rurali, R. Ferroelectric domain wall phonon polarizer. Phys. Rev. Mater. 1, 051402 (2017).

    Google Scholar 

  92. Yang, S. Y. et al. Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143–147 (2010).

    CAS  Google Scholar 

  93. Seidel, J. et al. Efficient photovoltaic current generation at ferroelectric domain walls. Phys. Rev. Lett. 107, 126805 (2011).

    Google Scholar 

  94. Seidel, J., Yang, S.-Y., Alarcón-Lladó, E., Ager, J. W. III & Ramesh, R. Nanoscale probing of high photovoltages at 109° domain walls. Ferroelectrics 433, 123–126 (2012).

    CAS  Google Scholar 

  95. Bhatnagar, A., Roy Chaudhuri, A., Heon Kim, Y., Hesse, D. & Alexe, M. Role of domain walls in the abnormal photovoltaic effect in BiFeO3. Nat. Commun. 4, 2835 (2013).

    Google Scholar 

  96. Yang, M.-M., Bhatnagar, A., Luo, Z.-D. & Alexe, M. Enhancement of local photovoltaic current at ferroelectric domain walls in BiFeO3. Sci. Rep. 7, 43070 (2017).

    CAS  Google Scholar 

  97. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 1–14 (2016).

    CAS  Google Scholar 

  98. De Luca, G. et al. Nanoscale design of polarization in ultrathin ferroelectric heterostructures. Nat. Commun. 8, 1419 (2017).

    Google Scholar 

  99. Campanini, M., Erni, R. & Rossell, M. D. Probing local order in multiferroics by transmission electron microscopy. Phys. Sci. Rev. https://doi.org/10.1515/psr-2019-0068 (2019).

    Article  Google Scholar 

  100. Rojac, T. et al. Domain-wall conduction in ferroelectric BiFeO3 controlled by accumulation of charged defects. Nat. Mater. 16, 322–327 (2017).

    CAS  Google Scholar 

  101. Mundy, J. A. et al. Functional electronic inversion layers at ferroelectric domain walls. Nat. Mater. 16, 622–627 (2017).

    CAS  Google Scholar 

  102. Lee, W. T. & Salje, E. K. H. Chemical turnstile. Appl. Phys. Lett. 87, 143110 (2005).

    Google Scholar 

  103. Wu, X. & Vanderbilt, D. Theory of hypothetical ferroelectric superlattices incorporating head-to-head and tail-to-tail 180° domain walls. Phys. Rev. B 73, 020103 (2006).

    Google Scholar 

  104. Jia, C.-L. et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Mater. 7, 57–61 (2008).

    CAS  Google Scholar 

  105. Cohen, R. E. Origin of ferroelectricity in perovskite oxides. Nature 358, 136–138 (1992).

    CAS  Google Scholar 

  106. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    CAS  Google Scholar 

  107. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

    Google Scholar 

  108. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A. & Rabe, K. M. First-principles study of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005).

    Google Scholar 

  109. He, L. & Vanderbilt, D. First-principles study of oxygen-vacancy pinning of domain walls in PbTiO3. Phys. Rev. B 68, 134103 (2003).

    Google Scholar 

  110. Pöykkö, S. & Chadi, D. J. Ab initio study of 180° domain wall energy and structure in PbTiO3. Appl. Phys. Lett. 75, 2830–2832 (1999).

    Google Scholar 

  111. Wojdeł, J. C. & Íñiguez, J. Ferroelectric transitions at ferroelectric domain walls found from first principles. Phys. Rev. Lett. 112, 247603 (2014).

    Google Scholar 

  112. Wang, Y. J., Chen, D., Tang, Y. L., Zhu, Y. L. & Ma, X. L. Origin of the Bloch-type polarization components at the 180° domain walls in ferroelectric PbTiO3. J. Appl. Phys. 116, 224105 (2014).

    Google Scholar 

  113. Liu, S., Grinberg, I. & Rappe, A. M. Intrinsic ferroelectric switching from first principles. Nature 534, 360–363 (2016).

    Google Scholar 

  114. Marton, P., Stepkova, V. & Hlinka, J. Divergence of dielectric permittivity near phase transition within ferroelectric domain boundaries. Phase Transit. 86, 103–108 (2013).

    CAS  Google Scholar 

  115. Li, M., Gu, Y., Wang, Y., Chen, L.-Q. & Duan, W. First-principles study of 180° domain walls in BaTiO3: mixed Bloch–Néel–Ising character. Phys. Rev. B 90, 054106 (2014).

    CAS  Google Scholar 

  116. Lubk, A., Gemming, S. & Spaldin, N. A. First-principles study of ferroelectric domain walls in multiferroic bismuth ferrite. Phys. Rev. B 80, 104110 (2009).

    Google Scholar 

  117. Kumagai, Y. & Spaldin, N. A. Structural domain walls in polar hexagonal manganites. Nat. Commun. 4, 1540 (2013).

    Google Scholar 

  118. Diéguez, O., Aguado-Puente, P., Junquera, J. & Íñiguez, J. Domain walls in a perovskite oxide with two primary structural order parameters: first-principles study of BiFeO3. Phys. Rev. B 87, 024102 (2013).

    Google Scholar 

  119. Småbråten, D. R. et al. Charged domain walls in improper ferroelectric hexagonal manganites and gallates. Phys. Rev. Mater. 2, 114405 (2018).

    Google Scholar 

  120. Íñiguez, J. in Domain WallsFrom Fundamental Properties to Nanotechnology Concepts 36–75 (Oxford Univ. Press, 2020).

  121. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Google Scholar 

  122. Robert, G., Damjanovic, D., Setter, N. & Turik, A. V. Preisach modeling of piezoelectric nonlinearity in ferroelectric ceramics. J. Appl. Phys. 89, 5067–5074 (2001).

    CAS  Google Scholar 

  123. Aggarwal, S. & Ramesh, R. Point defect chemistry of metal oxide heterostructures. Annu. Rev. Mater. Sci. 28, 463–499 (1998).

    CAS  Google Scholar 

  124. Scott, J. F. & Dawber, M. Oxygen-vacancy ordering as a fatigue mechanism in perovskite ferroelectrics. Appl. Phys. Lett. 76, 3801–3803 (2000).

    CAS  Google Scholar 

  125. Rojac, T., Kosec, M., Budic, B., Setter, N. & Damjanovic, D. Strong ferroelectric domain-wall pinning in BiFeO3 ceramics. J. Appl. Phys. 108, 074107 (2010).

    Google Scholar 

  126. Pöykkö, S. & Chadi, D. J. Ab initio study of dipolar defects and 180° domain walls in PbTiO3. J. Phys. Chem. Solids 61, 291–294 (2000).

    Google Scholar 

  127. Paillard, C., Geneste, G., Bellaiche, L. & Dkhil, B. Vacancies and holes in bulk and at 180° domain walls in lead titanate. J. Phys. Condens. Matter 29, 485707 (2017).

    Google Scholar 

  128. Tomoda, S., Shimada, T., Ueda, T., Wang, J. & Kitamura, T. Hybrid functional study on the ferroelectricity of domain walls with O-vacancies in PbTiO3. Mech. Eng. J. 2, 15-00037 (2015).

    Google Scholar 

  129. Chandrasekaran, A., Damjanovic, D., Setter, N. & Marzari, N. Defect ordering and defect–domain-wall interactions in PbTiO3: a first-principles study. Phys. Rev. B 88, 214116 (2013).

    Google Scholar 

  130. Chandrasekaran, A. et al. Asymmetric structure of 90° domain walls and interactions with defects in PbTiO3. Phys. Rev. B 93, 144102 (2016).

    Google Scholar 

  131. Li, X. Y. et al. Domain wall motion in perovskite ferroelectrics studied by the nudged elastic band method. J. Phys. Chem. C. 122, 3091–3100 (2018).

    CAS  Google Scholar 

  132. Lee, D. & Lee, D. The effect of domain wall on defect energetics in ferroelectric LiNbO3 from density functional theory calculations. J. Korean Ceram. Soc. 53, 312–316 (2016).

    CAS  Google Scholar 

  133. Småbråten, D. R. et al. Domain wall mobility and roughening in doped ferroelectric hexagonal manganites. Phys. Rev. Res. 2, 033159 (2020).

    Google Scholar 

  134. Gong, J. J. et al. Interactions of charged domain walls and oxygen vacancies in BaTiO3: a first-principles study. Mater. Today Phys. 6, 9–21 (2018).

    CAS  Google Scholar 

  135. Skjærvø, S. H., Småbråten, D. R., Spaldin, N. A., Tybell, T. & Selbach, S. M. Oxygen vacancies in the bulk and at neutral domain walls in hexagonal YMnO3. Phys. Rev. B 98, 184102 (2018).

    Google Scholar 

  136. Barrozo, P. et al. Defect-enhanced polarization switching in the improper ferroelectric LuFeO3. Adv. Mater. 32, 2000508 (2020).

    CAS  Google Scholar 

  137. Skjærvø, S. H. et al. Interstitial oxygen as a source of p-type conductivity in hexagonal manganites. Nat. Commun. 7, 13745 (2016).

    Google Scholar 

  138. Schaab, J. et al. Electrical half-wave rectification at ferroelectric domain walls. Nat. Nanotechnol. 13, 1028–1034 (2018).

    CAS  Google Scholar 

  139. Schultheiß, J. et al. Intrinsic and extrinsic conduction contributions at nominally neutral domain walls in hexagonal manganites. Appl. Phys. Lett. 116, 262903 (2020).

    Google Scholar 

  140. Becher, C. et al. Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nat. Nanotechnol. 10, 661–665 (2015).

    CAS  Google Scholar 

  141. Schaab, J. et al. Contact-free mapping of electronic transport phenomena of polar domains in SrMnO3 films. Phys. Rev. Appl. 5, 054009 (2016).

    Google Scholar 

  142. Bencan, A. et al. Domain-wall pinning and defect ordering in BiFeO3 probed on the atomic and nanoscale. Nat. Commun. 11, 1762 (2020).

    CAS  Google Scholar 

  143. Farokhipoor, S. & Noheda, B. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films. J. Appl. Phys. 112, 052003 (2012).

    Google Scholar 

  144. Noguchi, Y., Matsuo, H., Kitanaka, Y. & Miyayama, M. Ferroelectrics with a controlled oxygen-vacancy distribution by design. Sci. Rep. 9, 4225 (2019).

    Google Scholar 

  145. Sturman, B. & Podivilov, E. Ion and mixed electron–ion screening of charged domain walls in ferroelectrics. EPL Europhys. Lett. 122, 67005 (2018).

    Google Scholar 

  146. Stolichnov, I. et al. Persistent conductive footprints of 109° domain walls in bismuth ferrite films. Appl. Phys. Lett. 104, 132902 (2014).

    Google Scholar 

  147. Han, M.-G. et al. Interface-induced nonswitchable domains in ferroelectric thin films. Nat. Commun. 5, 4693 (2014).

    CAS  Google Scholar 

  148. Sanchez-Santolino, G. et al. Resonant electron tunnelling assisted by charged domain walls in multiferroic tunnel junctions. Nat. Nanotechnol. 12, 655–662 (2017).

    CAS  Google Scholar 

  149. Farokhipoor, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014).

    CAS  Google Scholar 

  150. Paruch, P. & Guyonnet, J. Nanoscale studies of ferroelectric domain walls as pinned elastic interfaces. Comptes Rendus Phys. 14, 667–684 (2013).

    CAS  Google Scholar 

  151. Paruch, P., Giamarchi, T. & Triscone, J.-M. Domain wall roughness in epitaxial ferroelectric PbZr0.2Ti0.8O3 thin films. Phys. Rev. Lett. 94, 197601 (2005).

    CAS  Google Scholar 

  152. Fiebig, M., Lottermoser, T., Meier, D. & Trassin, M. The evolution of multiferroics. Nat. Rev. Mater. 1, 1–14 (2016).

    Google Scholar 

  153. Crassous, A., Sluka, T., Tagantsev, A. K. & Setter, N. Polarization charge as a reconfigurable quasi-dopant in ferroelectric thin films. Nat. Nanotechnol. 10, 614–618 (2015).

    CAS  Google Scholar 

  154. Ruff, A. et al. Frequency dependent polarisation switching in h-ErMnO3. Appl. Phys. Lett. 112, 182908 (2018).

    Google Scholar 

  155. Jungk, T., Hoffmann, Á., Fiebig, M. & Soergel, E. Electrostatic topology of ferroelectric domains in YMnO3. Appl. Phys. Lett. 97, 012904 (2010).

    Google Scholar 

  156. Han, M.-G. et al. Ferroelectric switching dynamics of topological vortex domains in a hexagonal manganite. Adv. Mater. 25, 2415–2421 (2013).

    CAS  Google Scholar 

  157. Wang, X. et al. Unfolding of vortices into topological stripes in a multiferroic material. Phys. Rev. Lett. 112, 247601 (2014).

    CAS  Google Scholar 

  158. Xue, F., Wang, X., Shi, Y., Cheong, S.-W. & Chen, L.-Q. Strain-induced incommensurate phases in hexagonal manganites. Phys. Rev. B 96, 104109 (2017).

    Google Scholar 

  159. Campbell, M. P. et al. Hall effect in charged conducting ferroelectric domain walls. Nat. Commun. 7, 13764 (2016).

    CAS  Google Scholar 

  160. Coeuré, P., Guinet, P., Peuzin, J. C., Buisson, G. & Bertaut, E. F. Ferroelectric properties of hexagonal orthomanganites of yttrium and rare earths. In Proceedings of the International Meeting on Ferroelectricity Vol. 1, 332 (Institute of Physics of the Czechoslovak Academy of Sciences, 1966).

  161. Fennie, C. J. & Rabe, K. M. Ferroelectric transition in YMnO3 from first principles. Phys. Rev. B 72, 100103 (2005).

    Google Scholar 

  162. Lilienblum, M. et al. Ferroelectricity in the multiferroic hexagonal manganites. Nat. Phys. 11, 1070–1073 (2015).

    CAS  Google Scholar 

  163. Meier, D. et al. Translation domains in multiferroics. Phase Transit. 86, 33–52 (2013).

    CAS  Google Scholar 

  164. Holtz, M. E. et al. Topological defects in hexagonal manganites: inner structure and emergent electrostatics. Nano Lett. 17, 5883–5890 (2017).

    CAS  Google Scholar 

  165. Schoenherr, P. et al. Observation of uncompensated bound charges at improper ferroelectric domain walls. Nano Lett. 19, 1659–1664 (2019).

    CAS  Google Scholar 

  166. Schaab, J. et al. Electrostatic potential mapping at ferroelectric domain walls by low-temperature photoemission electron microscopy. Appl. Phys. Lett. 115, 122903 (2019).

    Google Scholar 

  167. Kuerten, L. et al. Local control of improper ferroelectric domains in YMnO3. Phys. Rev. B 102, 094108 (2020).

    CAS  Google Scholar 

  168. Griffin, S. M. et al. Scaling behavior and beyond equilibrium in the hexagonal manganites. Phys. Rev. X 2, 041022 (2012).

    CAS  Google Scholar 

  169. Meier, Q. N. et al. Global formation of topological defects in the multiferroic hexagonal manganites. Phys. Rev. X 7, 041014 (2017).

    Google Scholar 

  170. Chae, S. C. et al. Direct observation of the proliferation of ferroelectric loop domains and vortex-antivortex pairs. Phys. Rev. Lett. 108, 167603 (2012).

    CAS  Google Scholar 

  171. Salje, E. K. H. Robust templates for domain boundary engineering in ErMnO3. N. J. Phys. 18, 051001 (2016).

    Google Scholar 

  172. Hassanpour, E. et al. Robustness of magnetic and electric domains against charge carrier doping in multiferroic hexagonal ErMnO3. N. J. Phys. 18, 043015 (2016).

    Google Scholar 

  173. Du, Y. et al. Manipulation of domain wall mobility by oxygen vacancy ordering in multiferroic YMnO3. Phys. Chem. Chem. Phys. 15, 20010 (2013).

    CAS  Google Scholar 

  174. Li, J. et al. Scanning secondary-electron microscopy on ferroelectric domains and domain walls in YMnO3. Appl. Phys. Lett. 100, 152903 (2012).

    Google Scholar 

  175. Remsen, S. & Dabrowski, B. Synthesis and oxygen storage capacities of hexagonal Dy1–xYxMnO3+δ. Chem. Mater. 23, 3818–3827 (2011).

    CAS  Google Scholar 

  176. Świerczek, K. et al. Oxygen storage properties of hexagonal HoMnO3+δ. Phys. Chem. Chem. Phys. 19, 19243–19251 (2017).

    Google Scholar 

  177. Evans, D. M. et al. Conductivity control via minimally invasive anti-Frenkel defects in a functional oxide. Nat. Mater. 19, 1195–1200 (2020).

    CAS  Google Scholar 

  178. Mosberg, A. B. et al. FIB lift-out of conducting ferroelectric domain walls in hexagonal manganites. Appl. Phys. Lett. 115, 122901 (2019).

    Google Scholar 

  179. Pang, H. et al. Preparation of epitaxial hexagonal YMnO3 thin films and observation of ferroelectric vortex domains. NPJ Quant. Mater. 1, 16015 (2016).

    Google Scholar 

  180. Nordlander, J. et al. The ultrathin limit of improper ferroelectricity. Nat. Commun. 10, 5591 (2019).

    CAS  Google Scholar 

  181. Småbråten, D. R., Nakata, A., Meier, D., Miyazaki, T. & Selbach, S. M. First-principles study of topologically protected vortices and ferroelectric domain walls in hexagonal YGaO3. Phys. Rev. B 102, 144103 (2020).

    Google Scholar 

  182. Wang, W. et al. Room-temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110, 237601 (2013).

    Google Scholar 

  183. Das, H., Wysocki, A. L., Geng, Y., Wu, W. & Fennie, C. J. Bulk magnetoelectricity in the hexagonal manganites and ferrites. Nat. Commun. 5, 2998 (2014).

    Google Scholar 

  184. McNulty, J. A. et al. An electronically driven improper ferroelectric: tungsten bronzes as microstructural analogs for the hexagonal manganites. Adv. Mater. 31, 1903620 (2019).

    CAS  Google Scholar 

  185. Mundy, J. A. et al. Atomically engineered ferroic layers yield a room-temperature magnetoelectric multiferroic. Nature 537, 523–527 (2016).

    CAS  Google Scholar 

  186. Holtz, M. E. et al. Dimensionality-induced change in topological order in multiferroic oxide superlattices. Phys. Rev. Lett. 126, 157601 (2021).

    CAS  Google Scholar 

  187. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Google Scholar 

  188. Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden–Popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  189. Moritomo, Y., Asamitsu, A., Kuwahara, H. & Tokura, Y. Giant magnetoresistance of manganese oxides with a layered perovskite structure. Nature 380, 141–144 (1996).

    CAS  Google Scholar 

  190. Tarascon, J. M., Greene, L. H., Mckinnon, W. R., Hull, G. W. & Geballe, T. H. Superconductivity at 40 K in the oxygen-defect perovskites La2−xSrxCuO4y. Science 235, 1373–1376 (1987).

    CAS  Google Scholar 

  191. Meyer, G. M., Nelmes, R. J., Thornley, F. R. & Stirling, W. G. An inelastic neutron-scattering study of the improper ferroelectric transition in copper chlorine boracite. J. Phys. C 15, 2851–2866 (1982).

    CAS  Google Scholar 

  192. Cochard, C. et al. Anomalous domain wall motion in copper-chlorine boracite — a new opportunity in negative capacitance? Adv. Mater. 33, 2008068 (2021).

    Google Scholar 

  193. Sergienko, I. A. & Dagotto, E. Role of the Dzyaloshinskii–Moriya interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006).

    Google Scholar 

  194. Katsura, H., Nagaosa, N. & Balatsky, A. V. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95, 057205 (2005).

    Google Scholar 

  195. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006).

    Google Scholar 

  196. Newnham, R. E., Kramer, J. J., Schulze, W. A. & Cross, L. E. Magnetoferroelectricity in Cr2BeO4. J. Appl. Phys. 49, 6088–6091 (1978).

    CAS  Google Scholar 

  197. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003).

    CAS  Google Scholar 

  198. Hur, N. et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004).

    CAS  Google Scholar 

  199. Lawes, G. et al. Magnetically driven ferroelectric order in Ni3V2O8. Phys. Rev. Lett. 95, 087205 (2005).

    CAS  Google Scholar 

  200. Arkenbout, A. H., Palstra, T. T. M., Siegrist, T. & Kimura, T. Ferroelectricity in the cycloidal spiral magnetic phase of MnWO4. Phys. Rev. B 74, 184431 (2006).

    Google Scholar 

  201. Kimura, T., Sekio, Y., Nakamura, H., Siegrist, T. & Ramirez, A. P. Cupric oxide as an induced-multiferroic with high-TC. Nat. Mater. 7, 291–294 (2008).

    CAS  Google Scholar 

  202. Tokunaga, Y., Iguchi, S., Arima, T. & Tokura, Y. Magnetic-field-induced ferroelectric state in DyFeO3. Phys. Rev. Lett. 101, 097205 (2008).

    CAS  Google Scholar 

  203. Tokura, Y., Seki, S. & Nagaosa, N. Multiferroics of spin origin. Rep. Prog. Phys. 77, 076501 (2014).

    Google Scholar 

  204. Kimura, T. Spiral magnets as magnetoelectrics. Annu. Rev. Mater. Res. 37, 387–413 (2007).

    CAS  Google Scholar 

  205. Meier, D. et al. Observation and coupling of domains in a spin-spiral multiferroic. Phys. Rev. Lett. 102, 107202 (2009).

    CAS  Google Scholar 

  206. Meier, D. et al. Topology and manipulation of multiferroic hybrid domains in MnWO4. Phys. Rev. B 80, 224420 (2009).

    Google Scholar 

  207. Leo, N. et al. Polarization control at spin-driven ferroelectric domain walls. Nat. Commun. 6, 6661 (2015).

    CAS  Google Scholar 

  208. Matsubara, M. et al. Magnetoelectric domain control in multiferroic TbMnO3. Science 348, 1112–1115 (2015).

    CAS  Google Scholar 

  209. Wu, W. et al. Polarization-modulated rectification at ferroelectric surfaces. Phys. Rev. Lett. 104, 217601 (2010).

    Google Scholar 

  210. Manz, S. et al. Reversible optical switching of antiferromagnetism in TbMnO3. Nat. Photonics 10, 653–656 (2016).

    CAS  Google Scholar 

  211. Rocquefelte, X., Schwarz, K., Blaha, P., Kumar, S. & van den Brink, J. Room-temperature spin-spiral multiferroicity in high-pressure cupric oxide. Nat. Commun. 4, 2511 (2013).

    Google Scholar 

  212. Johnson, R. D. et al. Giant improper ferroelectricity in the ferroaxial magnet CaMn7O12. Phys. Rev. Lett. 108, 067201 (2012).

    CAS  Google Scholar 

  213. Kitagawa, Y. et al. Low-field magnetoelectric effect at room temperature. Nat. Mater. 9, 797–802 (2010).

    CAS  Google Scholar 

  214. Aoyama, T. et al. Giant spin-driven ferroelectric polarization in TbMnO3 under high pressure. Nat. Commun. 5, 4927 (2014).

    CAS  Google Scholar 

  215. Cherifi-Hertel, S. et al. Non-Ising and chiral ferroelectric domain walls revealed by nonlinear optical microscopy. Nat. Commun. 8, 15768 (2017).

    CAS  Google Scholar 

  216. Sheng, Y., Best, A., Arie, A. & Koynov, K. Three-dimensional ferroelectric domain visualization by Cherenkov-type second harmonic generation. Opt. Express 18, 16539–16545 (2010).

    CAS  Google Scholar 

  217. Kämpfe, T. et al. Optical three-dimensional profiling of charged domain walls in ferroelectrics by Cherenkov second-harmonic generation. Phys. Rev. B 89, 035314 (2014).

    Google Scholar 

  218. Simons, H. et al. Dark-field X-ray microscopy for multiscale structural characterization. Nat. Commun. 6, 6098 (2015).

    CAS  Google Scholar 

  219. Nan, N. & Wang, J. FIB-SEM three-dimensional tomography for characterization of carbon-based materials. Adv. Mater. Sci. Eng. https://www.hindawi.com/journals/amse/2019/8680715/ (2019).

  220. Xu, X. et al. Variability and origins of grain boundary electric potential detected by electron holography and atom-probe tomography. Nat. Mater. 19, 887–893 (2020).

    CAS  Google Scholar 

  221. Nakata, A. et al. Large scale and linear scaling DFT with the CONQUEST code. J. Chem. Phys. 152, 164112 (2020).

    CAS  Google Scholar 

  222. Kalinin, S. V. & Spaldin, N. A. Functional ion defects in transition metal oxides. Science 341, 858–859 (2013).

    CAS  Google Scholar 

  223. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nat. Mater. 10, 963–967 (2011).

    CAS  Google Scholar 

  224. Gu, Y. et al. Flexoelectricity and ferroelectric domain wall structures: phase-field modeling and DFT calculations. Phys. Rev. B 89, 174111 (2014).

    Google Scholar 

  225. Schiaffino, A. & Stengel, M. Macroscopic polarization from antiferrodistortive cycloids in ferroelastic SrTiO3. Phys. Rev. Lett. 119, 137601 (2017).

    Google Scholar 

  226. Xu, T., Shimada, T., Araki, Y., Wang, J. & Kitamura, T. Multiferroic domain walls in ferroelectric PbTiO3 with oxygen deficiency. Nano Lett. 16, 454–458 (2016).

    CAS  Google Scholar 

  227. Trassin, M. Low energy consumption spintronics using multiferroic heterostructures. J. Phys. Condens. Matter 28, 033001 (2015).

    Google Scholar 

  228. Becher, C. et al. Functional ferroic heterostructures with tunable integral symmetry. Nat. Commun. 5, 4295 (2014).

    CAS  Google Scholar 

  229. Bakaul, S. R. et al. Ferroelectric domain wall motion in freestanding single-crystal complex oxide thin film. Adv. Mater. 32, 1907036 (2020).

    CAS  Google Scholar 

  230. Aizu, K. Possible species of ferromagnetic, ferroelectric, and ferroelastic crystals. Phys. Rev. B 2, 754–772 (1970).

    Google Scholar 

  231. Wadhawan, V. Introduction to Ferroic Materials (CRC Press, 2000).

  232. Tolédano, J. C. & Tolédano, P. The Landau Theory of Phase Transitions: Application to Structural, Incommensurate, Magnetic and Liquid Crystal Systems Vol. 3 (World Scientific, 1987).

  233. Keve, E. T., Abrahams, S. C. & Bernstein, J. L. Ferroelectric ferroelastic paramagnetic Beta-Gd2(MoO4)3 crystal structure of the transition-metal molybdates and tungstates. VI. J. Chem. Phys. 54, 3185–3194 (1971).

    CAS  Google Scholar 

  234. Kalinin, S. V., Borisevich, A. & Fong, D. Beyond condensed matter physics on the nanoscale: the role of ionic and electrochemical phenomena in the physical functionalities of oxide materials. ACS Nano 6, 10423–10437 (2012).

    CAS  Google Scholar 

  235. Smyth, D. M. The Defect Chemistry of Metal Oxides (Oxford Univ. Press, 2000).

  236. Maier, J. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids (Wiley, 2004).

  237. Grande, T., Tolchard, J. R. & Selbach, S. M. Anisotropic thermal and chemical expansion in Sr-substituted LaMnO3+δ: implications for chemical strain relaxation. Chem. Mater. 24, 338–345 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

D.M. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 Research and Innovation Programme (grant agreement no. 863691). The Research Council of Norway (RCN) partly supported this work through the Norwegian Micro and Nano-Fabrication Facility, NorFab (project no. 295864), and its Centres of Excellence funding scheme, project no. 262633, “QuSpin”. S.M.S. and D.M. were further supported by the RCN via the FRIPRO projects 231430 and 263228, respectively.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Dennis Meier or Sverre M. Selbach.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Materials thanks Cheol Seong Hwang, Gustau Catalan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meier, D., Selbach, S.M. Ferroelectric domain walls for nanotechnology. Nat Rev Mater 7, 157–173 (2022). https://doi.org/10.1038/s41578-021-00375-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-021-00375-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing