Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High oxide ion and proton conductivity in a disordered hexagonal perovskite

Abstract

Oxide ion and proton conductors, which exhibit high conductivity at intermediate temperature, are necessary to improve the performance of ceramic fuel cells. The crystal structure plays a pivotal role in defining the ionic conduction properties, and the discovery of new materials is a challenging research focus. Here, we show that the undoped hexagonal perovskite Ba7Nb4MoO20 supports pure ionic conduction with high proton and oxide ion conductivity at 510 °C (the bulk conductivity is 4.0 mS cm−1), and hence is an exceptional candidate for application as a dual-ion solid electrolyte in a ceramic fuel cell that will combine the advantages of both oxide ion and proton-conducting electrolytes. Ba7Nb4MoO20 also showcases excellent chemical and electrical stability. Hexagonal perovskites form an important new family of materials for obtaining novel ionic conductors with potential applications in a range of energy-related technologies.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Oxide ion conductivity of Ba7Nb4MoO20.
Fig. 2: Proton conductivity in Ba7Nb4MoO20 under humidified conditions (pH2O 0.021 atm).
Fig. 3: Comparison of the bulk conductivity of Ba7Nb4MoO20 with other leading ionic conductors.
Fig. 4: The crystal structure of Ba7Nb4MoO20 and thermal rearrangement of the oxygen fractional occupancies.
Fig. 5: Hydration of Ba7Nb4MoO20.

Data availability

The data that support the findings of this study are available from the authors on reasonable request.

References

  1. 1.

    Steele, B. C. H. & Heinzel, A. Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    CAS  Google Scholar 

  2. 2.

    Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    CAS  Google Scholar 

  3. 3.

    Wachsman, E. D. & Lee, K. T. Lowering the temperature of solid oxide fuel cells. Science 334, 935–939 (2011).

    CAS  Google Scholar 

  4. 4.

    Jacobson, A. J. Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010).

    CAS  Google Scholar 

  5. 5.

    Abraham, F., Boivin, J. C., Mairesse, G. & Nowogrocki, G. The BIMEVOX series: a new family of high performances oxide ion conductors. Solid State Ion. 40-41, 934–937 (1990).

    CAS  Google Scholar 

  6. 6.

    Huang, K., Tichy, R. S. & Goodenough, J. B. Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: I, phase relationships and electrical properties. J. Am. Ceram. Soc. 81, 2565–2575 (1998).

    CAS  Google Scholar 

  7. 7.

    Li, M. et al. A family of oxide ion conductors based on the ferroelectric perovskite Na0.5Bi0.5TiO3. Nat. Mater. 13, 31–35 (2013).

    Google Scholar 

  8. 8.

    Shin, J. F., Orera, A., Apperley, D. C. & Slater, P. R. Oxyanion doping strategies to enhance the ionic conductivity in Ba2In2O5. J. Mater. Chem. 21, 874–879 (2011).

    CAS  Google Scholar 

  9. 9.

    Kendrick, E., Islam, M. S. & Slater, P. R. Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties. J. Mater. Chem. 17, 3104–3111 (2007).

    CAS  Google Scholar 

  10. 10.

    Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007).

    CAS  Google Scholar 

  11. 11.

    Kuang, X. et al. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nat. Mater. 7, 498–504 (2008).

    CAS  Google Scholar 

  12. 12.

    Yang, X. et al. Cooperative mechanisms of oxygen vacancy stabilization and migration in the isolated tetrahedral anion Scheelite structure. Nat. Commun. 9, 4484 (2018).

    Google Scholar 

  13. 13.

    Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    CAS  Google Scholar 

  14. 14.

    Fabbri, E., Pergolesi, D. & Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39, 4355–4369 (2010).

    CAS  Google Scholar 

  15. 15.

    Zhang, G. B. & Smyth, D. M. Protonic conduction in Ba2In2O5. Solid State Ion. 82, 153–160 (1995).

    CAS  Google Scholar 

  16. 16.

    Haugsrud, R. & Norby, T. Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5, 193–196 (2006).

    CAS  Google Scholar 

  17. 17.

    Bae, K. et al. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells. Nat. Commun. 8, 14553 (2017).

    CAS  Google Scholar 

  18. 18.

    Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018).

    CAS  Google Scholar 

  19. 19.

    Zakowsky, N., Williamson, S. & Irvine, J. T. S. Elaboration of CO2 tolerance limits of BaCe0.9Y0.1O3–δ electrolytes for fuel cells and other applications. Solid State Ion. 176, 3019–3026 (2005).

    CAS  Google Scholar 

  20. 20.

    Bhide, S. V. & Virkar, A. V. Stability of BaCeO3-based proton conductors in water-containing atmospheres. J. Electrochem. Soc. 146, 2038–2044 (1999).

    CAS  Google Scholar 

  21. 21.

    Sažinas, R., Bernuy-López, C., Einarsrud, M. & Grande, T. Effect of CO2 exposure on the chemical stability and mechanical properties of BaZrO3-ceramics. J. Am. Ceram. Soc. 99, 3685–3695 (2016).

    Google Scholar 

  22. 22.

    Jankovic, J., Wilkinson, D. P. & Hui, R. Proton conductivity and stability of Ba2In2O5 in hydrogen containing atmospheres. J. Electrochem. Soc. 158, B61–B68 (2011).

    CAS  Google Scholar 

  23. 23.

    Shin, J. F. & Slater, P. R. Enhanced CO2 stability of oxyanion doped Ba2In2O5 systems co-doped with La, Zr. J. Power Sources 196, 8539–8543 (2011).

    CAS  Google Scholar 

  24. 24.

    D’Epifanio, A., Fabbri, E., Di Bartolomeo, E., Licoccia, S. & Traversa, E. Design of BaZr0.8Y0.2O3–δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs). Fuel Cells 8, 69–76 (2008).

    Google Scholar 

  25. 25.

    Yang, L. et al. Enhanced sulphur and coking tolerance of a mixed ion conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-δ. Science 326, 126–129 (2009).

    CAS  Google Scholar 

  26. 26.

    Zhou, C. et al. New reduced-temperature ceramic fuel cells with dual-ion conducting electrolyte and triple-conducting double perovskite cathode. J. Mater. Chem. A. 7, 13265–13274 (2019).

    CAS  Google Scholar 

  27. 27.

    Katz, L. & Ward, R. Structure relations in mixed metal oxides. Inorg. Chem. 3, 205–211 (1964).

    CAS  Google Scholar 

  28. 28.

    Darriet, J. & Subramanian, M. A. Structural relationships between compounds based on the stacking of mixed layers related to hexagonal perovskite-type structures. J. Mater. Chem. 5, 543–552 (1995).

    CAS  Google Scholar 

  29. 29.

    Fop, S. et al. Oxide ion conductivity in the hexagonal perovskite derivative Ba3MoNbO8.5. J. Am. Chem. Soc. 138, 16764–16769 (2016).

    CAS  Google Scholar 

  30. 30.

    McCombie, K. S. et al. The crystal structure and electrical properties of the oxide ion conductor Ba3WNbO8.5. J. Mater. Chem. A. 6, 5290–5295 (2018).

    CAS  Google Scholar 

  31. 31.

    Garcia-González, E., Parras, M. & González-Calbet, J. M. Crystal structure of an unusual polytype: 7H-Ba7Nb4MoO20. Chem. Mater. 11, 433–437 (1999).

    Google Scholar 

  32. 32.

    Irvine, J. T. S., Sinclair, D. C. & West, A. R. Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2, 132–138 (1990).

    CAS  Google Scholar 

  33. 33.

    Chambers, M. S. et al. Hexagonal perovskite related oxide ion conductor Ba3NbMoO8.5: phase transition, temperature evolution of the local structure and properties. J. Mater. Chem. A. 7, 25503–25510 (2019).

    CAS  Google Scholar 

  34. 34.

    Auckett, J. E., Milton, K. L. & Evans, I. R. Cation distributions and anion disorder in Ba3NbMO8.5 (M = Mo, W) materials: implications for oxide ion conductivity. Chem. Mater. 31, 1715–1719 (2019).

    CAS  Google Scholar 

  35. 35.

    Yashima, M. et al. Direct evidence for two-dimensional oxide-ion diffusion in the hexagonal perovskite-related oxide Ba3MoNbO8.5-δ. J. Mater. Chem. A. 7, 13910–13916 (2019).

    CAS  Google Scholar 

  36. 36.

    Islam, M. S. Computer modelling of defects and transport in perovskite oxides. Solid State Ion. 154-155, 75–85 (2002).

    CAS  Google Scholar 

  37. 37.

    Wind, J., Mole, R. A., Yu, D., Avdeev, M. & Ling, C. D. Hydration mechanisms and proton conduction in the mixed ionic-electronic conductors Ba4Nb2O9 and Ba4Ta2O9. Chem. Mater. 30, 4949–4958 (2018).

    CAS  Google Scholar 

  38. 38.

    Kim, G., Griffin, J. M., Blanc, F., Haile, S. M. & Grey, C. P. Characterization of the dynamics in the protonic conductor CsH2PO4 by 17O solid-state NMR spectroscopy and first-principles calculations: correlating phosphate and protonic motion. J. Am. Chem. Soc. 137, 3867–3876 (2015).

    CAS  Google Scholar 

  39. 39.

    Huse, M. et al. Neutron diffraction study of the monoclinic to tetragonal structural transition in LaNbO4 and its relation to proton mobility. J. Solid State Chem. 187, 27–34 (2012).

    CAS  Google Scholar 

  40. 40.

    Yamazaki, Y., Babilo, P. & Haile, S. M. Defect chemistry of yttrium-doped barium zirconate: a thermodynamic analysis of water uptake. Chem. Mater. 20, 6352–6357 (2008).

    CAS  Google Scholar 

  41. 41.

    Noirault, S. et al. Water incorportation into the (Ba1-xLax)2In2O5+x1-x (0 ≤ x ≤ 0.6) system. Solid State Ion. 178, 1353–1359 (2007).

    CAS  Google Scholar 

  42. 42.

    Bielecki, J., Parker, S. F., Mazzei, L., Börjesson, L. & Karlsson, M. Structure and dehydration mechanism of the proton conducting oxide Ba2In2O5(H2O)x. J. Mater. Chem. A. 4, 1224–1232 (2016).

    CAS  Google Scholar 

  43. 43.

    Dunstan, M. T. et al. Phase behavior and mixed ionic–electronic conductivity of Ba4Sb2O9. Solid State Ion. 235, 1–7 (2013).

    CAS  Google Scholar 

  44. 44.

    Rahman, S. M. H. et al. Proton conductivity of hexagonal and cubic BaT1-xScxO3-δ (0.1 ≤ x ≤ 0.8). Dalton Trans. 43, 15055–15064 (2014).

    CAS  Google Scholar 

  45. 45.

    Tabacaru, C. et al. Protonic and electronic defects in the 12R-type hexagonal perovskite Sr3LaNb3O12. Solid State Ion. 253, 239–246 (2013).

    CAS  Google Scholar 

  46. 46.

    Kultz. Unti, L. F., Grzebielucka, E. C., Antonio Chinelatto, A. S., Mather, G. C. & Chinelatto, A. L. Synthesis and electrical characterization of Ba5Nb4O15 and Ba5Nb3.9M0.1O(15-δ) (M = Ti, Zr) hexagonal perovskites. Ceram. Int. 45, 5087–5092 (2019).

    CAS  Google Scholar 

  47. 47.

    Nomura, K. & Kageyama, H. Transport properties of Ba(Zr0.8Y0.2)O3−δ perovskite. Solid State Ion. 178, 661–665 (2007).

    CAS  Google Scholar 

  48. 48.

    Fop, S. et al. Investigation of the relationship between the structure and conductivity of the novel oxide ionic conductor Ba3MoNbO8.5. Chem. Mater. 29, 4146–4152 (2017).

    CAS  Google Scholar 

  49. 49.

    Fop, S., McCombie, K. S., Wildman, E. J., Skakle, J. M. S. & Mclaughlin, A. C. Hexagonal perovskite derivatives: a new direction in the design of oxide ion conducting materials. Chem. Commun. 55, 2127–2137 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Leverhulme trust and EPSRC (MISE). We also acknowledge STFC-GB for provision of beamtime at the Institut Laue Langevin.

Author information

Affiliations

Authors

Contributions

A.C.M. and S.F. designed the study. S.F. performed the synthesis and electrical characterization of Ba7Nb4MoO20 and analysed the data along with K.S.M. and E.J.W. The transport and pO2 measurements were performed at the University of St. Andrews by S.F., P.A.C. and C.S. with guidance from J.T.S.I. The structural characterization was performed by S.F. and K.S.M. with guidance from A.C.M, E.J.W., J.M.S.S. and C.R. S.F. performed the thermogravimetric measurements and analysed the results. A.C.M. and S.F. wrote the manuscript with E.J.W. A.C.M. directed the project.

Corresponding authors

Correspondence to Sacha Fop or Abbie C. Mclaughlin.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–3, discussion and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fop, S., McCombie, K.S., Wildman, E.J. et al. High oxide ion and proton conductivity in a disordered hexagonal perovskite. Nat. Mater. 19, 752–757 (2020). https://doi.org/10.1038/s41563-020-0629-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing