Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conjugated sulfonamides as a class of organic lithium-ion positive electrodes

Abstract

The applicability of organic battery materials in conventional rocking-chair lithium (Li)-ion cells remains deeply challenged by the lack of Li-containing and air-stable organic positive electrode chemistries. Decades of experimental and theoretical research in the field has resulted in only a few recent examples of Li-reservoir materials, all of which rely on the archetypal conjugated carbonyl redox chemistry. Here we extend the chemical space of organic Li-ion positive electrode materials with a class of conjugated sulfonamides (CSAs) and show that the electron delocalization on the sulfonyl groups endows the resulting CSAs with intrinsic oxidation and hydrolysis resistance when handled in ambient air, and yet display reversible electrochemistry for charge storage. The formal redox potential of the uncovered CSA chemistries spans a wide range between 2.85 V and 3.45 V (versus Li+/Li0), finely tunable through electrostatic or inductive molecular design. This class of organic Li-ion positive electrode materials challenges the realm of the inorganic battery cathode, as this first generation of CSA chemistries already displays gravimetric energy storage metrics comparable to those of the stereotypical LiFePO4.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Li-ion battery versus Li-metal battery working principle, implications for positive electrode chemistry and the molecular rationale behind the CSA design.
Fig. 2: Redox mechanism analysis.
Fig. 3: The electrochemistry of the developed CSA library.
Fig. 4: Correlation between the aromatic UV–vis absorption band and the redox potential.
Fig. 5: Charge-storage performances of selected CSA compounds.
Fig. 6: CSA-based organic Li-ion full-cell prototypes.

Data availability

The datasets generated and analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Williams, D. L., Byrne, J. J. & Driscoll, J. S. A high energy density lithium/dichloroisocyanuric acid battery system. J. Electrochem. Soc. 116, 2–4 (1969).

    CAS  Article  Google Scholar 

  2. 2.

    Alt, H., Binder, H., Koehling, A. & Sandstede, G. Quinones as rechargeable and regenerable battery cathode and materials. J. Electrochem. Soc. 118, 1950–1953 (1971).

    CAS  Article  Google Scholar 

  3. 3.

    Nigrey, P. J. Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material. J. Electrochem. Soc. 128, 1651–1654 (1981).

    CAS  Article  Google Scholar 

  4. 4.

    Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x < –1): a new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783–789 (1980).

    CAS  Article  Google Scholar 

  5. 5.

    Guyomard, D. & Tarascon, J.-M. Rocking-chair or lithium-ion rechargeable lithium batteries. Adv. Mater. 6, 408–412 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Poizot, P., Gaubicher, J., Renault, S., Dubois, L., Liang, Y. & Yao, Y. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Poizot, P. & Dolhem, F. Clean energy new deal for a sustainable world: from non-CO2 generating energy sources to greener electrochemical storage devices. Energy Environ. Sci. 4, 2003–2019 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    Poizot, P. et al. Opportunities and challenges for organic electrodes in electrochemical energy storage. Chem. Rev. 120, 6490–6557 (2020).

    CAS  Article  Google Scholar 

  10. 10.

    Judez, X., Qiao, L., Armand, M. & Zhang, H. Energy density assessment of organic batteries. ACS Appl. Energy Mater. 2, 4008–4015 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Poizot, P., Dolhem, F. & Gaubicher, J. Progress in all-organic rechargeable batteries using cationic and anionic configurations: toward low-cost and greener storage solutions? Curr. Opin. Electrochem. 9, 70–80 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Lu, Y. & Chen, J. Prospects of organic electrode materials for practical lithium batteries. Nat. Rev. Chem. 4, 127–142 (2020).

    CAS  Article  Google Scholar 

  13. 13.

    Esser, B. et al. A perspective on organic electrode materials and technologies for next generation batteries. J. Power Sources 482, 228814 (2021).

    CAS  Article  Google Scholar 

  14. 14.

    Lakraychi, A. E. et al. An air-stable lithiated cathode material based on a 1,4-benzenedisulfonate backbone for organic Li-ion batteries. J. Mater. Chem. A 6, 19182–19189 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Jezowski, P. et al. Safe and recyclable lithium-ion capacitors using sacrificial organic lithium salt. Nat. Mater. 17, 167–173 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Jouhara, A. et al. Raising the redox potential in carboxyphenolate-based positive organic materials via cation substitution. Nat. Commun. 9, 4401 (2018).

    Article  Google Scholar 

  17. 17.

    Sieuw, L. et al. Through-space charge modulation overriding substituent effect: rise of the redox potential at 3.35 V in a lithium–phenolate stereoelectronic isomer. Chem. Mater. https://doi.org/10.1021/acs.chemmater.0c02989 (2020).

  18. 18.

    Foos, J. S. Synthesis and characterization of semiconductive poly-1,4-dimethoxybenzene and its derived polyquinone. J. Electrochem. Soc. 133, 836 (1986).

    CAS  Article  Google Scholar 

  19. 19.

    Oyama, N., Tatsuma, T., Sato, T. & Sotomura, T. Dimercaptan–polyaniline composite electrodes for lithium batteries with high energy density. Nature 373, 598–600 (1995).

    CAS  Article  Google Scholar 

  20. 20.

    Luo, C. et al. Azo compounds as a family of organic electrode materials for alkali-ion batteries. Proc. Natl Acad. Sci. USA 115, 2004–2009 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    Hanyu, Y. & Honma, I. Rechargeable quasi-solid state lithium battery with organic crystalline cathode. Sci. Rep. 2, 453 (2012).

    Article  Google Scholar 

  22. 22.

    Lux, S. F. et al. LiTFSI stability in water and its possible use in aqueous lithium-ion batteries: pH dependency, electrochemical window and temperature stability. J. Electrochem. Soc. 160, A1694–A1700 (2013).

    CAS  Article  Google Scholar 

  23. 23.

    Armand, M. B., Chabagno, J.-M. & Duclot, M. J. in Fast Ion Transport in Solids, Electrodes and Electrolytes (eds Vashitshta, P., Mundy, J. N. & Shenoy, G. K.) 665–672 (North Holland, 1979).

  24. 24.

    Thiam, A., Iojoiu, C., Leprêtre, J. C. & Sanchez, J. Y. Lithium salts based on a series of new anilinyl-perfluorosulfonamide salts and their polymer electrolytes. J. Power Sources 364, 138–147 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Klaus Deuchert, S. H. Multistage organic redox systems—a general structural principle. Angew. Chem. Int. Ed. Engl. 17, 875–958 (1978).

    Article  Google Scholar 

  26. 26.

    Jimenez, P. et al. Lithium n-doped polyaniline as a high-performance electroactive material for rechargeable batteries. Angew. Chem. Int. Ed. 56, 1553–1556 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Jouhara, A. et al. Tuning the chemistry of organonitrogen compounds for promoting all-organic anionic rechargeable batteries. Angew. Chem. Int. Ed. 58, 15680–15684 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Zhu, X. Q. & Wang, C. H. Accurate estimation of the one-electron reduction potentials of various substituted quinones in DMSO and CH3CN. J. Org. Chem. 75, 5037–5047 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Gottis, S., Barres, A. L., Dolhem, F. & Poizot, P. Voltage gain in lithiated enolate-based organic cathode materials by isomeric effect. ACS Appl. Mater. Interfaces 6, 10870–10876 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Habibi, D., Pakravan, N. & Nematollahi, D. The green and convergent paired Diels–Alder electro-synthetic reaction of 1,4-hydroquinone with 1,2-bis(bromomethyl)benzene. Electrochem. Commun. 49, 65–69 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Wang, H. et al. Effect of cycling ion and solvent on the redox chemistry of substituted quinones and solvent-induced breakdown of the correlation between redox potential and electron-withdrawing power of substituents. J. Phys. Chem. C 124, 13609–13617 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    Lakraychi, A. E., Dolhem, F., Djedaïni-Pilard, F. & Becuwe, M. Substituent effect on redox potential of terephthalate-based electrode materials for lithium batteries. Electrochem. Commun. 93, 71–75 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Doub, L. & Vandenbelt, J. M. The ultraviolet absorption spectra of simple unsaturated compounds. I. Mono- and p-disubstituted benzene derivatives. J. Am. Chem. Soc. 69, 2714–2723 (1947).

    CAS  Article  Google Scholar 

  34. 34.

    Johnson, C. D. The Hammett Equation (Cambridge Univ. Press, 1973).

  35. 35.

    Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Liang, Y. & Yao, Y. Positioning organic electrode materials in the battery landscape. Joule 2, 1690–1706 (2018).

    CAS  Article  Google Scholar 

  37. 37.

    Genorio, B., Pirnat, K., Cerc-Korosec, R., Dominko, R. & Gaberscek, M. Electroactive organic molecules immobilized onto solid nanoparticles as a cathode material for lithium-ion batteries. Angew. Chem. Int. Ed. 49, 7222–7224 (2010).

    CAS  Article  Google Scholar 

  38. 38.

    Muench, S. et al. Polymer-based organic batteries. Chem. Rev. 116, 9438–9484 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Bisbey, R. P. & Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 3, 533–543 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Zhao, R., Liang, Z., Zou, R. & Xu, Q. Metal–organic frameworks for batteries. Joule 2, 2235–2259 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    CAS  Article  Google Scholar 

  42. 42.

    Mourad, E. et al. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Nat. Mater. 16, 446–453 (2017).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

J.W. and X.L. acknowledge the China Scholarship Council for funding. L.S. acknowledges partial support from FSR-UC Louvain for his fellowship. A.V acknowledges funding from a European Research Council (ERC) grant, project 770870-MOOiRE, as well as support from F.R.S.-FNRS through the grants J.0111.16–Equinox, J.0043.18–MESOPOL and U.N011.18–DEMIST. C.M. acknowledges financial support by the MEC, Nucleu-Program, project PN19 35 01 01. J.W. thanks A. Jouhara and E. Deunf for help with the initial experiments.

Author information

Affiliations

Authors

Contributions

J.W., A.E.L. and A.V. conceived the idea and designed the experiments. J.W. executed most of the experimental work, including the synthesis, chemical, spectroscopic and electrochemical studies. A.E.L., X.L. and L.S. complemented the work of J.W. with experiments and studies. C.M. conducted the DFT studies. J.W., A.E.L., C.M., P.P. and A.V. analysed the data and wrote the manuscript. All the authors discussed the experiments, edited the manuscript and gave consent for this publication.

Corresponding author

Correspondence to Alexandru Vlad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Kenichi Oyaizu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–17, Tables 1–7 and Figs. 1–49.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Lakraychi, A.E., Liu, X. et al. Conjugated sulfonamides as a class of organic lithium-ion positive electrodes. Nat. Mater. 20, 665–673 (2021). https://doi.org/10.1038/s41563-020-00869-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing