Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards data-driven next-generation transmission electron microscopy

Electron microscopy touches on nearly every aspect of modern life, underpinning materials development for quantum computing, energy and medicine. We discuss the open, highly integrated and data-driven microscopy architecture needed to realize transformative discoveries in the coming decade.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The electron microscopy framework.
Fig. 2: Microscopy data-production rates and analysis workflows.

References

  1. Ruska, E. Rev. Mod. Phys. 59, 627–638 (1987).

    Article  CAS  Google Scholar 

  2. Shen, P. S. Anal. Bioanal. Chem. 410, 2053–2057 (2018).

    Article  CAS  Google Scholar 

  3. Shechtman, D., Blech, I., Gratias, D. & Cahn, J. W. Phys. Rev. Lett. 53, 1951–1953 (1984).

    Article  CAS  Google Scholar 

  4. Varela, M. et al. Annu. Rev. Mater. Res. 35, 539–569 (2005).

    Article  CAS  Google Scholar 

  5. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  6. Bruno, I. et al. Data Sci. J. 16, 38 (2017).

    Article  Google Scholar 

  7. Baldwin, P. R. et al. Curr. Opinion Microbiol. 43, 1–8 (2018).

    Article  CAS  Google Scholar 

  8. Minor, A. M., Denes, P. & Muller, D. A. MRS Bull. 44, 961–966 (2019).

    Article  Google Scholar 

  9. Tate, M. W. et al. Microscopy Microanal. 22, 237–249 (2016).

    Article  CAS  Google Scholar 

  10. Zhou, J. et al. Nature 570, 500–503 (2019).

    Article  CAS  Google Scholar 

  11. Jiang, Y. et al. Nature 559, 343–349 (2018).

    Article  CAS  Google Scholar 

  12. Booth, C. Microscopy Microanal. 18, 78–79 (2012).

    Article  Google Scholar 

  13. Hart, J. L. et al. Sci. Rep. 7, 8243 (2017).

    Article  Google Scholar 

  14. BES workshop reports (DOE, accessed 22 June 2020); https://science.osti.gov/bes/Community-Resources/Reports

  15. Ophus, C. Adv. Struct. Chem. Imaging 3, 13 (2017).

    Article  Google Scholar 

  16. Dolde, F. et al. Nat. Phys. 7, 459–463 (2011).

    Article  CAS  Google Scholar 

  17. Voyles, P. M. Curr. Opinion Solid State Mater. Sci. 21, 141–158 (2017).

    Article  Google Scholar 

  18. Ophus, C. Microscopy Microanal. 25, 563–582 (2019).

    Article  CAS  Google Scholar 

  19. Daulton, T. L., Little, B. J., Lowe, K. & Jones-Meehan, J. Microscopy Microanal. 7, 470–485 (2001).

    Article  CAS  Google Scholar 

  20. Sharma, R. & Crozier, P. A. In Handbook of Microscopy for Nanotechnology (eds Yao, N. & Wang, Z. L.) 531–565 (Kluwer Academic Publishers, 2005).

  21. Robertson, I. M. et al. J. Mater. Res. 26, 1341–1383 (2011).

    Article  CAS  Google Scholar 

  22. York, D. G. et al. Astron. J. 120, 1579–1587 (2000).

    Article  Google Scholar 

  23. Borrnert, F. et al. Microscopy Microanal. 21, 99–100 (2015).

    Article  Google Scholar 

  24. Boyes, E. & Gai, P. Ultramicroscopy 67, 219–232 (1997).

    Article  CAS  Google Scholar 

  25. Shibata, N. et al. Nat. Commun. 10, 2308 (2019).

    Article  CAS  Google Scholar 

  26. Tao, F. F. & Crozier, P. A. Chem. Rev. 116, 3487–3539 (2016).

    Article  CAS  Google Scholar 

  27. Ziatdinov, M. et al. Sci. Adv. 5, eaaw8989 (2019).

    Article  CAS  Google Scholar 

  28. Somnath, S., Smith, C. R., Laanait, N., Vasudevan, R. K. & Jesse, S. Microscopy Microanal. 25, 220–221 (2019).

    Article  Google Scholar 

  29. Wilkinson, M. D. et al. Sci. Data 3, 160018 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This commentary is the result of discussions from the first in a series of Next-Generation Transmission Electron Microscopy (NexTEM) workshops, held at Pacific Northwest National Laboratory in October 2018. S.R.S. thanks A. Lang, B. Matthews and J. Hart for reviewing the manuscript. This work was supported by the Laboratory Directed Research and Development (LDRD) Nuclear Processing Science Initiative (NPSI) at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-programme national laboratory operated for the US Department of Energy (DOE) by Battelle Memorial Institute under contract no. DE-AC05-76RL0-1830. This work was supported in part by the Office of Science, Office of Basic Energy Sciences, of the US DOE under contracts no. DE-AC02-05CH11231 (C.O.), no. 10122 (S.R.S. and Y.D.), no. KC0201010 ERKCS89 (S.V.K.), no. KC0203020:67037 (D.L.) and no. DE-AC02-05-CH11231 within the KC22ZH programme (H.Z.). This work was supported in part by the US DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (A.P.-L.). M.M. acknowledges the Virginia Tech National Center for Earth and Environmental Nanotechnology Infrastructure (NanoEarth), a member of the National Nanotechnology Coordinated Infrastructure (NNCI), supported by NSF (ECCS 1542100). This project has received funding from the European Research Council under the Horizon 2020 Research and Innovation Programme (grant no. 856538, project 3D MAGiC; and grant no. 823717, project ESTEEM3 (R.E.D.-B.)). X.Z. acknowledges support from the DOE BES Geosciences Program at PNNL (FWP 56674). The work was partly performed at the Center for Nanophase Materials Sciences (S.V.K.) and the Center for Integrated Nanotechnologies (K.H.), which are Office of Science User Facilities operated for the US DOE. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US DOE under contract no. DE-AC02-05CH11231. A portion of the microscopy shown was performed at the Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. L.J. acknowledges SFI grants AMBER2-12/RC/2278-P2 and URF/RI/191637. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the US DOE’s National Nuclear Security Administration under contract DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the US DOE or the US government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven R. Spurgeon or Mitra L. Taheri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spurgeon, S.R., Ophus, C., Jones, L. et al. Towards data-driven next-generation transmission electron microscopy. Nat. Mater. 20, 274–279 (2021). https://doi.org/10.1038/s41563-020-00833-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00833-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing