Design of van der Waals interfaces for broad-spectrum optoelectronics

Abstract

Van der Waals (vdW) interfaces based on 2D materials are promising for optoelectronics, as interlayer transitions between different compounds allow tailoring of the spectral response over a broad range. However, issues such as lattice mismatch or a small misalignment of the constituent layers can drastically suppress electron–photon coupling for these interlayer transitions. Here, we engineered type-II interfaces by assembling atomically thin crystals that have the bottom of the conduction band and the top of the valence band at the Γ point, and thus avoid any momentum mismatch. We found that these van der Waals interfaces exhibit radiative optical transitions irrespective of the lattice constant, the rotational and/or translational alignment of the two layers or whether the constituent materials are direct or indirect gap semiconductors. Being robust and of general validity, our results broaden the scope of future optoelectronics device applications based on two-dimensional materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: PL of 2L-InSe/2L-WS2 interfaces.
Fig. 2: Direct interlayer transition in 2L-InSe/2L-WS2 interfaces.
Fig. 3: Robust k-direct interlayer transitions at Γ in InSe–TMD multilayer interfaces.
Fig. 4: Band diagram of vdW interfaces.

Data availability

The data supporting the findings of this study will be made available free of charges as soon as possible on the Yareta repository of the University of Geneva (https://yareta.unige.ch/). In the meantime, data are available from the corresponding authors without any restriction.

References

  1. 1.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

  2. 2.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Neto, A. H. C. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

  3. 3.

    Fang, H. et al. Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proc. Natl Acad. Sci. USA 111, 6198–6202 (2014).

  4. 4.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004 (2018).

  5. 5.

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

  6. 6.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

  7. 7.

    Ross, J. S. et al. Interlayer exciton optoelectronics in a 2D heterostructure p–n junction. Nano Lett. 17, 638–643 (2017).

  8. 8.

    Mennel, L., Paur, M. & Mueller, T. Second harmonic generation in strained transition metal dichalcogenide monolayers: MoS2, MoSe2, WS2, and WSe2. APL Photon. 4, 034404 (2018).

  9. 9.

    Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).

  10. 10.

    Yu, H., Wang, Y., Tong, Q., Xu, X. & Yao, W. Anomalous light cones and valley optical selection rules of interlayer excitons in twisted heterobilayers. Phys. Rev. Lett. 115, 187002 (2015).

  11. 11.

    Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

  12. 12.

    Furchi, M. M., Pospischil, A., Libisch, F., Burgdörfer, J. & Mueller, T. Photovoltaic effect in an electrically tunable van der Waals heterojunction. Nano Lett. 14, 4785–4791 (2014).

  13. 13.

    Mueller, T., Pospischil, A. & Furchi, M. M. in Micro- and Nanotechnology Sensors, Systems, and Applications VII, Vol. 9467 (eds George, T., Dutta, A. K. & Islam, M.S.) 946713 (International Society for Optics and Photonics, 2015).

  14. 14.

    Binder, J. et al. Upconverted electroluminescence via Auger scattering of interlayer excitons in van der Waals heterostructures. Nat. Commun. 10, 2335 (2019).

  15. 15.

    Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

  16. 16.

    Ponomarev, E., Ubrig, N., Gutiérrez-Lezama, I., Berger, H. & Morpurgo, A. F. Semiconducting van der Waals interfaces as artificial semiconductors. Nano Lett. 18, 5146–5152 (2018).

  17. 17.

    Splendiani, A. et al. Emerging photoluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

  18. 18.

    Mudd, G. W. et al. Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement. Adv. Mater. 25, 5714–5718 (2013).

  19. 19.

    Bandurin, D. A. et al. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12, 223–227 (2017).

  20. 20.

    Göbel, E. O. & Ploog, K. Fabrication and optical properties of semiconductor quantum wells and superlattices. Prog. Quantum Electron. 14, 289–356 (1990).

  21. 21.

    He, L. et al. MBE growth of (111) CdTe on Zn-stabilized and Se-stabilized (100) ZnSe. J. Cryst. Growth 101, 147–152 (1990).

  22. 22.

    O’Donnell, K. P. & Henderson, B. The Zn(Cd)S(Se) family of superlattices. J. Lumin. 52, 133–146 (1992).

  23. 23.

    Yu, E. T., McCaldin, J. O. & McGill, T. C. in Solid State Physics Vol. 46 (eds. Ehrenreich, H. & Turnbull, D.) 1–146 (Academic, 1992).

  24. 24.

    Butov, L. V., Imamoglu, A., Mintsev, A. V., Campman, K. L. & Gossard, A. C. Photoluminescence kinetics of indirect excitons in GaAs/AlxGa1–xAs coupled quantum wells. Phys. Rev. B 59, 1625–1628 (1999).

  25. 25.

    Kroemer, H. Nobel lecture. Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

  26. 26.

    Klingshirn, C. F. Semiconductor Optics 4th edn (Springer, 2012).

  27. 27.

    Butov, L. V. Excitonic devices. Superlattices Microstruct. 108, 2–26 (2017).

  28. 28.

    Zhao, W. et al. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7, 791–797 (2013).

  29. 29.

    Zhao, W. et al. Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2. Nano Lett. 13, 5627–5634 (2013).

  30. 30.

    Mudd, G. W. et al. High broad-band photoresponsivity of mechanically formed InSe–graphene van der Waals heterostructures. Adv. Mater. 27, 3760–3766 (2015).

  31. 31.

    Mudd, G. W. et al. The direct-to-indirect band gap crossover in two-dimensional van der Waals indium selenide crystals. Sci. Rep. 6, 39619 (2016).

  32. 32.

    Butov, L. V., Shashkin, A. A., Dolgopolov, V. T., Campman, K. L. & Gossard, A. C. Magneto-optics of the spatially separated electron and hole layers in GaAs/AlxGa1–xAs coupled quantum wells. Phys. Rev. B 60, 8753–8758 (1999).

  33. 33.

    Laikhtman, B. & Rapaport, R. Exciton correlations in coupled quantum wells and their luminescence blue shift. Phys. Rev. B 80, 195313 (2009).

  34. 34.

    Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

  35. 35.

    Miller, B. et al. Long-lived direct and indirect interlayer excitons in van der Waals heterostructures. Nano Lett. 17, 5229–5237 (2017).

  36. 36.

    Brotons-Gisbert, M. et al. Out-of-plane orientation of luminescent excitons in two-dimensional indium selenide. Nat. Commun. 10, 3913 (2019).

  37. 37.

    Hamer, M. J. et al. Indirect to direct gap crossover in two-dimensional InSe revealed by angle-resolved photoemission spectroscopy. ACS Nano 13, 2136–2142 (2019).

  38. 38.

    Terry, D. J. et al. Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures. 2D Mater. 5, 041009 (2018).

  39. 39.

    Nguyen, P. V. et al. Visualizing electrostatic gating effects in two-dimensional heterostructures. Nature 572, 220–223 (2019).

  40. 40.

    Wilson, N. R. et al. Determination of band offsets, hybridization, and exciton binding in 2D semiconductor heterostructures. Sci. Adv. 3, e1601832 (2017).

Download references

Acknowledgements

We acknowledge A. Ferreira for continuous and precious technical support. A.F.M. acknowledges financial support from the Swiss National Science Foundation (Division II) and from the EU Graphene Flagship project. N.U. acknowledges financial support from the Swiss National Science Foundation through the Ambizione program. R.V.G. and V.I.F. acknowledge financial support from European Graphene Flagship Core 2 Project under grant agreement 785219, ERC Synergy Grant Hetero2D, EPSRC grants EP/S030719/1, EP/S019367/1, EP/P026850/1 and EP/N010345/1, and a Lloyd Register Foundation Nanotechnology Grant. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, A3 Foresight by JSPS and the CREST (JP-MJCR15F3), JST. Z.D.K. acknowledges the support from the National Academy of Sciences of Ukraine.

Author information

N.U., E.P., J.Z. and D.T. contributed equally. A.F.M. and V.I.F. conceived the idea of this project. N.U., E.P., D.T., D.D., J.Z., J.H. and I.G.-L. fabricated the heterostructures, participated in their characterization and analysed the data. D.T., J.Z., J.H., A.Z. and R.V.G. designed and performed the experiment on the lamella samples. V.Z. and V.I.F. developed the theory of optical transitions at Γ in vdW interfaces. Z.R.K., Z.D.K., A.P., T.T. and K.W. provided InSe and h-BN crystals. N.U., E.P., R.V.G., V.I.F. and A.F.M. wrote the manuscript with input from all the authors. All the authors discussed the results.

Correspondence to Nicolas Ubrig or Vladimir I. Fal’ko or Alberto F. Morpurgo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ubrig, N., Ponomarev, E., Zultak, J. et al. Design of van der Waals interfaces for broad-spectrum optoelectronics. Nat. Mater. 19, 299–304 (2020). https://doi.org/10.1038/s41563-019-0601-3

Download citation