Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures

Abstract

Spin–orbit coupling stands as a powerful tool to interconvert charge and spin currents and to manipulate the magnetization of magnetic materials through spin-torque phenomena. However, despite the diversity of existing bulk materials and the recent advent of interfacial and low-dimensional effects, control of this interconversion at room temperature remains elusive. Here, we demonstrate strongly enhanced room-temperature spin-to-charge interconversion in graphene driven by the proximity of WS2. By performing spin precession experiments in appropriately designed Hall bars, we separate the contributions of the spin Hall and the spin galvanic effects. Remarkably, their corresponding conversion efficiencies can be tailored by electrostatic gating in magnitude and sign, peaking near the charge neutrality point with an equivalent magnitude that is comparable to the largest efficiencies reported to date. Such electric-field tunability provides a building block for spin generation free from magnetic materials and for ultra-compact magnetic memory technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: SCI in graphene by proximity of a TMDC and measurement scheme.
Fig. 2: Sample characterization and spin-to-charge conversion measurements.
Fig. 3: Gate control of the ISHE and SGE at room temperature.
Fig. 4: Temperature dependence of the spin-to-charge conversion associated with the SHE.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and the other findings of this study are available from the corresponding authors on reasonable request.

References

  1. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213 (2015).

    Google Scholar 

  2. Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Google Scholar 

  3. Soumyanarayanan, A., Reyren, N., Fert., A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Google Scholar 

  4. Sander, D. et al. The 2017 magnetism roadmap. J. Phys. D 50, 363001 (2017).

    Google Scholar 

  5. Garello, K. et al. SOT-MRAM 300MM integration for low power and ultrafast embedded memories. In Proc. 2018 IEEE Symposium on VLSI Circuits Digest of Technical Papers 81–82 (IEEE, 2018).

  6. Ganichev, S. D. et al. Spin-galvanic effect. Nature 417, 153–156 (2002).

    CAS  Google Scholar 

  7. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    CAS  Google Scholar 

  8. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    CAS  Google Scholar 

  9. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Google Scholar 

  10. Bibes, M. & Barthélémy, A. Oxide spintronics. IEEE Trans. Electron. Devices 54, 1003–1023 (2007).

    CAS  Google Scholar 

  11. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  12. Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    CAS  Google Scholar 

  13. Roche, S. et al. Graphene spintronics: the European flagship perspective. 2D Mater. 2, 030202 (2015).

    Google Scholar 

  14. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  15. Wang, Z., Tang, C., Sachs, R., Barlas, Y. & Shi, J. Proximity-induced ferromagnetism in graphene revealed by the anomalous Hall effect on transition-metal dichalcogenides. Phys. Rev. Lett. 114, 016603 (2015).

    Google Scholar 

  16. Leutenantsmeyer, J. C., Kaverzin, A. A., Wojtaszek, M. & van Wees, B. J. Proximity induced room temperature ferromagnetism in graphene probed with spin currents. 2D Mater. 4, 014001 (2017).

    Google Scholar 

  17. Benítez, L. A. et al. Strongly anisotropic spin relaxation in graphene–transition metal dichalcogenide heterostructures at room temperature. Nat. Phys. 14, 303–308 (2018).

    Google Scholar 

  18. Mendes, J. B. S. et al. Spin-current to charge-current conversion and magnetoresistance in a hybrid structure of graphene and yttrium iron garnet. Phys. Rev. Lett. 115, 226601 (2015).

    CAS  Google Scholar 

  19. Dushenko, S. et al. Gate-tunable spin-charge conversion and the role of spin-orbit interaction in graphene. Phys. Rev. Lett. 116, 106602 (2016).

    Google Scholar 

  20. Gmitra, M. & Fabian, J. Graphene on transition-metal dichalcogenides: a platform for proximity spin-orbit physics and optospintronics. Phys. Rev. B 92, 155403 (2015).

    Google Scholar 

  21. Gmitra, M., Kochan, D., Högl, P. & Fabian, J. Trivial and inverted Dirac bands and the emergence of quantum spin Hall states in graphene on transition-metal dichalcogenides. Phys. Rev. B 93, 155104 (2016).

    Google Scholar 

  22. Cummings, A. W., Garcia, J. H., Fabian, J. & Roche, S. Giant spin lifetime anisotropy in graphene induced by proximity effects. Phys. Rev. Lett. 119, 206601 (2017).

    Google Scholar 

  23. Ghiasi, T. S., Ingla-Aynés, J., Kaverzin, A. A. & van Wees, B. J. Large proximity-induced spin lifetime anisotropy in transition-metal dichalcogenide/graphene heterostructures. Nano Lett. 17, 7528–7532 (2017).

    CAS  Google Scholar 

  24. Garcia, J. H., Cummings, A. W. & Roche, S. Spin Hall effect and weak antilocalization in graphene/transition metal dichalcogenide heterostructures. Nano Lett. 17, 5078 (2017).

    CAS  Google Scholar 

  25. Offidani, M., Milletarì, M., Raimondi, R. & Ferreira, A. Optimal charge-to-spin conversion in graphene on transition metal dichalcogenide. Phys. Rev. Lett. 119, 0196801 (2017).

    Google Scholar 

  26. Milletarì, M., Offidani, M., Ferreira, A. & Raimondi, R. Covariant conservation laws and the spin Hall effect in Dirac-Rashba systems. Phys. Rev. Lett. 119, 246801 (2017).

    Google Scholar 

  27. Avsar, A. et al. Spin–orbit proximity effect in graphene. Nat. Commun. 5, 4875 (2014).

    CAS  Google Scholar 

  28. Kaverzin, A. A. & van Wees, B. J. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization. Phys. Rev. B 91, 165412 (2015).

    Google Scholar 

  29. Wang, Y., Cai, X., Reutt-Robey, J. & Fuhrer, M. S. Neutral-current Hall effects in disordered graphene. Phys. Rev. B 92, 161411(R) (2015).

    Google Scholar 

  30. Van Tuan, D. et al. Spin Hall effect and origins of nonlocal resistance in adatom-decorated graphene. Phys. Rev. Lett. 117, 176602 (2016).

    Google Scholar 

  31. Ribeiro, M., Power, S. R., Roche, S., Hueso, L. H. & Casanova, C. Scale-invariant large nonlocality in polycrystalline graphene. Nat. Commun. 8, 2198 (2017).

    Google Scholar 

  32. Safeer, C. K. et al. Room-temperature spin Hall effect in graphene/MoS2 van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    CAS  Google Scholar 

  33. Valenzuela, S. O. & Tinkham, M. Electrical detection of spin currents: the spin-current induced Hall effect. J. App. Phys. 101, 09B103 (2007).

    Google Scholar 

  34. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    CAS  Google Scholar 

  35. Savero Torres, W. et al. Spin precession and spin Hall effect in monolayer graphene/Pt nanostructures. 2D Mater. 4, 041008 (2017).

    Google Scholar 

  36. Raes, B. et al. Determination of the spin-lifetime anisotropy in graphene using oblique spin precession. Nat. Commun. 7, 11444 (2016).

    CAS  Google Scholar 

  37. Raes, B. et al. Spin precession in anisotropic media. Phys. Rev. B 95, 085403 (2017).

    Google Scholar 

  38. Yan, W. et al. A two-dimensional spin field-effect switch. Nat. Commun. 7, 13372 (2016).

    CAS  Google Scholar 

  39. Dankert, A. & Dash, S. P. Electrical gate control of spin current in van der Waals heterostructures at room temperature. Nat. Commun. 8, 16093 (2017).

    CAS  Google Scholar 

  40. Rojas-Sánchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 1944 (2013).

    Google Scholar 

  41. Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261 (2016).

    CAS  Google Scholar 

  42. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Google Scholar 

  43. Ghiasi, T. S., Kaverzin, A. A., Blah, P. J. & van Wees, B. J. Charge-to-spin conversion by the Rashba–Edelstein effect in 2D van der Waals heterostructures up to room temperature. Nano Lett. 19, 5959–5966 (2019).

    CAS  Google Scholar 

  44. Ferreira, A., Rappoport, T. G., Cazalilla, M. A. & Castro Neto, A. H. Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Phys. Rev. Lett. 112, 066601 (2014).

    Google Scholar 

  45. Gebeyehu, Z. M. et al. Spin communication over 30 μm long channels of chemical vapor deposited graphene on SiO2. 2D Mater. 6, 034003 (2019).

    Google Scholar 

Download references

Acknowledgements

We thank D. Torres for help in designing Fig. 1. This research was partially supported by the European Union’s Horizon 2020 research and innovation programme Graphene Flagship CORE 2, under grant agreement no. 785219; by the European Research Council under grant agreement no. 306652 SPINBOUND; by the Spanish Ministry of Economy and Competitiveness, MINECO (under contract nos FIS2015-62641-ERC, MAT2016-75952-R and SEV-2017-0706 Severo Ochoa); and by the CERCA Programme and the Secretariat for Universities and Research, Knowledge Department of the Generalitat de Catalunya 2017 SGR 827. M.T. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 665919.

Author information

Authors and Affiliations

Authors

Contributions

L.A.B. and S.O.V. designed the device. L.A.B. and J.F.S. fabricated the device. The measurements were performed by L.A.B. and W.S.T. with the participation of J.F.S. The experimental set-up was implemented by M.T. and M.V.C., who also helped with the measurements. J.H.G. and S.R. carried out the SHE quantum simulations. L.A.B., W.S.T. and S.O.V analysed the data and wrote the manuscript. All authors contributed to the study, discussed the results and commented on the manuscript. S.O.V. supervised the work.

Corresponding authors

Correspondence to L. Antonio Benítez, Williams Savero Torres or Sergio O. Valenzuela.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benítez, L.A., Savero Torres, W., Sierra, J.F. et al. Tunable room-temperature spin galvanic and spin Hall effects in van der Waals heterostructures. Nat. Mater. 19, 170–175 (2020). https://doi.org/10.1038/s41563-019-0575-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-019-0575-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing