Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast pyroelectric photodetection with on-chip spectral filters


Thermal detectors, such as bolometric, pyroelectric and thermoelectric devices, are uniquely capable of sensing incident radiation for any electromagnetic frequency; however, the response times of practical devices are typically on the millisecond scale1,2,3,4,5,6,7. By integrating a plasmonic metasurface with an aluminium nitride pyroelectric thin film, we demonstrate spectrally selective, room-temperature pyroelectric detectors from 660–2,000 nm with an instrument-limited 1.7 ns full width at half maximum and 700 ps rise time. Heat generated from light absorption diffuses through the subwavelength absorber into the pyroelectric film producing responsivities up to 0.18 V W−1 due to the temperature-dependent spontaneous polarization of the pyroelectric films. Moreover, finite-element simulations reveal the possibility of reaching a 25 ps full width at half maximum and 6 ps rise time rivalling that of semiconductor photodiodes8. This design approach has the potential to realize large-area, inexpensive gigahertz pyroelectric detectors for wavelength-specific detection from the ultraviolet to short-wave infrared or beyond for, for example, high-speed hyperspectral imaging.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Metasurface-pyroelectric detector concept.
Fig. 2: Temporal detector response.
Fig. 3: Responsivity characterization.
Fig. 4: Noise performance.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Code availability

The code for the optical and thermal simulations is available from the corresponding authors on reasonable request.


  1. 1.

    Dao, T. D. et al. Hole array perfect absorbers for spectrally selective midwavelength infrared pyroelectric detectors. ACS Photon. 3, 1271–1278 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Goldsmith, J. H., Vangala, S., Hendrickson, J. R., Cleary, J. W. & Vella, J. H. Long-wave infrared selective pyroelectric detector using plasmonic near-perfect absorbers and highly oriented aluminum nitride. J. Opt. Soc. Am. B 34, 1965 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Suen, J. Y. et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Mauser, K. W. et al. Resonant thermoelectric nanophotonics. Nat. Nanotechnol. 12, 770–775 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Jung, J. Y. et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci. Rep. 7, 430 (2017).

    Article  Google Scholar 

  6. 6.

    Ogawa, S. & Kimata, M. Wavelength- or polarization-selective thermal infrared detectors for multi-color or polarimetric imaging using plasmonics and metamaterials. Materials (Basel). 10, 493 (2017).

    Google Scholar 

  7. 7.

    Kuznetsov, S. A., Paulish, A. G., Navarro-Ciá, M. & Arzhannikov, A. V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci. Rep. 6, 1–11 (2016).

    Article  Google Scholar 

  8. 8.

    Gao, Y. et al. Photon-trapping microstructures enable high-speed high-efficiency silicon photodiodes. Nat. Photon. 11, 301–308 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    CAS  Article  Google Scholar 

  11. 11.

    Li, W., Shi, Y., Chen, Z. & Fan, S. Photonic thermal management of coloured objects. Nat. Commun. 9, 4240 (2018).

    Article  Google Scholar 

  12. 12.

    Coppens, Z. J. & Valentine, J. G. Spatial and temporal modulation of thermal emission. Adv. Mater. 29, 1701275 (2017).

    Article  Google Scholar 

  13. 13.

    Dongare, P. D. et al. Nanophotonics-enabled solar membrane distillation for off-grid water purification. Proc. Natl Acad. Sci. USA 114, 6936–6941 (2017).

    CAS  Article  Google Scholar 

  14. 14.

    Biswas, R. & Povinelli, M. L. Sudden, laser-induced heating through silicon nanopatterning. ACS Photon. 2, 1681–1685 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Dao, T. D. et al. An on‐chip quad‐wavelength pyroelectric sensor for spectroscopic infrared sensing. Adv. Sci. 1900579 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Efetov, D. K. et al. Fast thermal relaxation in cavity-coupled graphene bolometers with a Johnson noise read-out. Nat. Nanotechnol. 13, 797–801 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Stotlar, S. C. & McLellan, E. J. Developments in high-speed pyroelectric detectors. Opt. Eng. 20, 469–471 (1981).

    CAS  Article  Google Scholar 

  18. 18.

    Roundy, C. B. & Byer, R. L. Subnanosecond pyroelectric detector. Appl. Phys. Lett. 21, 512–515 (1972).

    Article  Google Scholar 

  19. 19.

    Roundy, C. B., Byer, R. L., Phillion, D. W. & Kuizenga, D. J. A 170 psec pyroelectric detector. Opt. Commun. 10, 374–377 (1974).

    Article  Google Scholar 

  20. 20.

    Wang, Z. et al. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing. Nat. Commun. 6, 8401 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Peng, W. et al. Enhanced performance of a self-powered organic/inorganic photodetector by pyro-phototronic and piezo-phototronic effects. Adv. Mater. 29, 1–9 (2017).

    Google Scholar 

  22. 22.

    Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Sykes, M. E. et al. Enhanced generation and anisotropic Coulomb scattering of hot electrons in an ultra-broadband plasmonic nanopatch metasurface. Nat. Commun. 8, 986 (2017).

    Article  Google Scholar 

  24. 24.

    Zhu, X., Vannahme, C., Højlund-Nielsen, E., Mortensen, N. A. & Kristensen, A. Plasmonic colour laser printing. Nat. Nanotechnol. 11, 325–329 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Kong, X. T., Khosravi Khorashad, L., Wang, Z. & Govorov, A. O. Photothermal circular dichroism induced by plasmon resonances in chiral metamaterial absorbers and bolometers. Nano Lett. 18, 2001–2008 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Spitzer, F. et al. Enhancement of electron hot spot relaxation in photoexcited plasmonic structures by thermal diffusion. Phys. Rev. B 94, 201118 (2016).

    Article  Google Scholar 

  27. 27.

    Yan, W. S. et al. Temperature dependence of the pyroelectric coefficient and the spontaneous polarization of AlN. Appl. Phys. Lett. 90, 212102 (2007).

    Article  Google Scholar 

  28. 28.

    Crisman, E. E., Derov, J. S., Drehman, A. J. & Gregory, O. J. Large pyroelectric response from reactively sputtered aluminum nitride thin films. Electrochem. Solid-State Lett. 8, H31 (2005).

    CAS  Article  Google Scholar 

  29. 29.

    Akselrod, G. M. et al. Large-area metasurface perfect absorbers from visible to near-infrared. Adv. Mater. 27, 8028–8034 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Fuflyigin, V., Salley, E., Osinsky, A. & Norris, P. Pyroelectric properties of AlN. Appl. Phys. Lett. 77, 3075–3077 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    Stewart, J. W., Akselrod, G. M., Smith, D. R. & Mikkelsen, M. H. Toward multispectral imaging with colloidal metasurface pixels. Adv. Mater. 29, 1602971 (2017).

    Article  Google Scholar 

  32. 32.

    Hoang, T. B. & Mikkelsen, M. H. Broad electrical tuning of plasmonic nanoantennas at visible frequencies. Appl. Phys. Lett. 108, 183107 (2016).

    Article  Google Scholar 

  33. 33.

    Peng, J. et al. Scalable electrochromic nanopixels using plasmonics. Sci. Adv. 5, eaaw2205 (2019).

    Article  Google Scholar 

  34. 34.

    Sakoglu, U., Tyo, J. S., Hayat, M. M., Raghavan, S. & Krishna, S. Spectrally adaptive infrared photodetectors with bias-tunable quantum dots. J. Opt. Soc. Am. B 21, 7–17 (2004).

    CAS  Article  Google Scholar 

  35. 35.

    Bao, J. & Bawendi, M. G. A colloidal quantum dot spectrometer. Nature 523, 67–70 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Iqbal, A. & Mohd-Yasin, F. Reactive sputtering of aluminum nitride (002) thin films for piezoelectric applications: A review. Sens. (Basel) 18, 1797 (2018).

    Article  Google Scholar 

  37. 37.

    Hoang, T. B., Huang, J. & Mikkelsen, M. H. Colloidal synthesis of nanopatch antennas for applications in plasmonics and nanophotonics. J. Vis. Exp. 111, e53876 (2016).

    Google Scholar 

Download references


J.W.S. and M.H.M. acknowledge support from the Air Force Office of Scientific Research (grant nos. FA9550-18-1-0326 and FA9550-17-1-0002). W.L. and S.F. acknowledge support by the U.S. Department of Energy (grant no. DE-FG02-07ER46426). J.W.S. also acknowledges support from the Department of Defense through the National Defense Science and Engineering Graduate Fellowship Program.

Author information




J.H.V. and M.H.M. conceived and planned the project. J.W.S. and J.H.V. fabricated the samples. J.W.S. built the experimental setup and performed the experiments. J.W.S. analysed the data. J.W.S. and W.L. performed the finite-element simulations. J.H.V., S.F. and M.H.M. supervised the effort. J.W.S., J.H.V. and M.H.M. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Maiken H. Mikkelsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussion, Figs. 1–4 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stewart, J.W., Vella, J.H., Li, W. et al. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing