Spin current as a probe of quantum materials

Abstract

Spin current historically referred to the flow of electrons carrying spin information, in particular since the discovery of giant magnetoresistance in the 1980s. Recently, it has been found that spin current can also be mediated by spin-triplet supercurrent, superconducting quasiparticles, spinons, magnons, spin superfluidity and so on. Here, we review key progress concerning the developing research direction utilizing spin current as a probe of quantum materials. We focus on spin-triplet superconductivity and spin dynamics in the ferromagnet/superconductor heterostructures, quantum spin liquids, magnetic phase transitions, magnon-polarons, magnon-polaritons, magnon Bose–Einstein condensates and spin superfluidity. The unique characteristics of spin current as a probe will be fruitful for future investigation of spin-dependent properties and the identification of new quantum materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Spin current as a probe of spin-triplet supercurrent.
Fig. 2: Spin current as a probe of spin dynamics of SCs.
Fig. 3: Spin current as a probe of quantum spin liquids.
Fig. 4: Magnon spin current and its probe of antiferromagnetic phase transition.
Fig. 5: Spin current as a probe of magnon-polarons and magnon-polaritons.
Fig. 6: Magnon BEC and spin supercurrent.
Fig. 7: Spin current as a probe of spin superfluidity.

References

  1. 1.

    Fert, A. Nobel Lecture: origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    CAS  Google Scholar 

  2. 2.

    Parkin, S. S. P., More, N. & Roche, K. P. Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. Phys. Rev. Lett. 64, 2304–2307 (1990).

    CAS  Google Scholar 

  3. 3.

    Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    CAS  Google Scholar 

  4. 4.

    Zutic, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    CAS  Google Scholar 

  5. 5.

    Maekawa, S., Valenzuela, S. O., Saitoh, E. & Kimura, T. Spin Current (Oxford Univ. Press, 2012).

  6. 6.

    Silsbee, R. H., Janossy, A. & Monod, P. Coupling between ferromagnetic and conduction-spin-resonance modes at a ferromagnetic/normal-metal interface. Phys. Rev. B 19, 4382–4399 (1979).

    CAS  Google Scholar 

  7. 7.

    Tserkovnyak, Y., Brataas, A., Bauer, G. E. W. & Halperin, B. I. Nonlocal magnetization dynamics in ferromagnetic heterostructures. Rev. Mod. Phys. 77, 1375–1421 (2005).

    CAS  Google Scholar 

  8. 8.

    Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    CAS  Google Scholar 

  9. 9.

    Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    CAS  Google Scholar 

  10. 10.

    Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    CAS  Google Scholar 

  11. 11.

    Shi, J., Zhang, P., Xiao, D. & Niu, Q. Proper definition of spin current in spin–orbit coupled systems. Phys. Rev. Lett. 96, 076604 (2006).

    Google Scholar 

  12. 12.

    Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Google Scholar 

  13. 13.

    Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Google Scholar 

  14. 14.

    Aronov, A. G., Lyanda-Geller, Y. B. & Pikus, G. E. Spin polarization of electrons by an electric current. J. Exp. Theor. Phys. 73, 537 (1991).

    Google Scholar 

  15. 15.

    Bychkov, Y. A. & Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).

    Google Scholar 

  16. 16.

    Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Google Scholar 

  17. 17.

    Silsbee, R. H. Spin–orbit induced coupling of charge current and spin polarization. J. Phys. Condens. Matter. 16, R179–R207 (2004).

    CAS  Google Scholar 

  18. 18.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Google Scholar 

  19. 19.

    Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    CAS  Google Scholar 

  20. 20.

    Flipse, J. et al. Observation of the spin Peltier effect for magnetic insulators. Phys. Rev. Lett. 113, 027601 (2014).

    CAS  Google Scholar 

  21. 21.

    Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    CAS  Google Scholar 

  22. 22.

    Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    CAS  Google Scholar 

  23. 23.

    Basov, D. N., Averitt, R. D. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    CAS  Google Scholar 

  24. 24.

    Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    CAS  Google Scholar 

  25. 25.

    Samarth, N. Quantum materials discovery from a synthesis perspective. Nat. Mater. 16, 1068–1076 (2017).

    CAS  Google Scholar 

  26. 26.

    Moler, K. A. Imaging quantum materials. Nat. Mater. 16, 1049–1052 (2017).

    CAS  Google Scholar 

  27. 27.

    Gedik, N. & Vishik, I. Photoemission of quantum materials. Nat. Phys. 13, 1029–1033 (2017).

    CAS  Google Scholar 

  28. 28.

    Casola, F., van der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    CAS  Google Scholar 

  29. 29.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotechnol. 9, 794–807 (2014).

    CAS  Google Scholar 

  30. 30.

    Roche, S. et al. Graphene spintronics: the European Flagship perspective. 2D Mater. 2, 030202 (2015).

    Google Scholar 

  31. 31.

    Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Google Scholar 

  32. 32.

    Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quant. Mater. 3, 27 (2018).

    Google Scholar 

  33. 33.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    CAS  Google Scholar 

  34. 34.

    Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  35. 35.

    Hsieh, D. et al. A tunable topological insulator in the spin helical Dirac transport regime. Nature 460, 1101–1105 (2009).

    CAS  Google Scholar 

  36. 36.

    Roushan, P. et al. Topological surface states protected from backscattering by chiral spin texture. Nature 460, 1106–1109 (2009).

    CAS  Google Scholar 

  37. 37.

    Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat. Nanotechnol. 9, 218–224 (2014).

    CAS  Google Scholar 

  38. 38.

    Shiomi, Y. et al. Spin-electricity conversion induced by spin injection into topological insulators. Phys. Rev. Lett. 113, 196601 (2014).

    CAS  Google Scholar 

  39. 39.

    Song, Q. et al. Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6. Nat. Commun. 7, 13485 (2016).

    CAS  Google Scholar 

  40. 40.

    Stevens, M. J. et al. Quantum interference control of ballistic pure spin currents in semiconductors. Phys. Rev. Lett. 90, 136603 (2003).

    Google Scholar 

  41. 41.

    Buzdin, A. I. Proximity effects in superconductor-ferromagnet heterostructures. Rev. Mod. Phys. 77, 935–976 (2005).

    CAS  Google Scholar 

  42. 42.

    Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS  Google Scholar 

  43. 43.

    Eschrig, M. Spin-polarized supercurrents for spintronics. Phys. Today 64, 43–49 (2011).

    CAS  Google Scholar 

  44. 44.

    Bergeret, F. S., Silaev, M., Virtanen, P. & Heikkilä, T. T. Colloquium: nonequilibrium effects in superconductors with a spin-splitting field. Rev. Mod. Phys. 90, 041001 (2018).

    CAS  Google Scholar 

  45. 45.

    Soulen, R. J. Jr et al. Measuring the spin polarization of a metal with a superconducting point contact. Science 282, 85–88 (1998).

    CAS  Google Scholar 

  46. 46.

    Johnson, M. & Silsbee, R. H. Interfacial charge-spin coupling: Injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790–1793 (1985).

    CAS  Google Scholar 

  47. 47.

    Kivelson, S. A. & Rokhsar, D. S. Bogoliubov quasiparticles, spinons, and spin-charge decoupling in superconductors. Phys. Rev. B 41, 11693–11696 (1990).

    CAS  Google Scholar 

  48. 48.

    Yamashita, T., Takahashi, S., Imamura, H. & Maekawa, S. Spin transport and relaxation in superconductors. Phys. Rev. B 65, 172509 (2002).

    Google Scholar 

  49. 49.

    Yang, H., Yang, S.-H., Takahashi, S., Maekawa, S. & Parkin, S. S. P. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9, 586–593 (2010).

    CAS  Google Scholar 

  50. 50.

    Robinson, J. W. A., Witt, J. D. S. & Blamire, M. G. Controlled injection of spin-triplet supercurrents into a strong ferromagnet. Science 329, 59–61 (2010).

    CAS  Google Scholar 

  51. 51.

    Keizer, R. S. et al. A spin triplet supercurrent through the half-metallic ferromagnet CrO2. Nature 439, 825–827 (2006).

    CAS  Google Scholar 

  52. 52.

    Bergeret, F. S. & Tokatly, I. V. Spin–orbit coupling as a source of long-range triplet proximity effect in superconductor-ferromagnet hybrid structures. Phys. Rev. B 89, 134517 (2014).

    Google Scholar 

  53. 53.

    Högl, P., Matos-Abiague, A., Žutić, I. & Fabian, J. Magnetoanisotropic Andreev reflection in ferromagnet-superconductor junctions. Phys. Rev. Lett. 115, 116601 (2015).

    Google Scholar 

  54. 54.

    Jeon, K.-R. et al. Enhanced spin pumping into superconductors provides evidence for superconducting pure spin currents. Nat. Mater. 17, 499–503 (2018).

    CAS  Google Scholar 

  55. 55.

    Lesne, E. et al. Highly efficient and tunable spin-to-charge conversion through Rashba coupling at oxide interfaces. Nat. Mater. 15, 1261–1266 (2016).

    CAS  Google Scholar 

  56. 56.

    Song, Q. et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv. 3, e1602312 (2017).

    Google Scholar 

  57. 57.

    Yao, Y. et al. Probe of spin dynamics in superconducting NbN thin films via spin pumping. Phys. Rev. B 97, 224414 (2018).

    CAS  Google Scholar 

  58. 58.

    Montiel, X. & Eschrig, M. Generation of pure superconducting spin current in magnetic heterostructures via nonlocally induced magnetism due to Landau Fermi liquid effects. Phys. Rev. B 98, 104513 (2018).

    CAS  Google Scholar 

  59. 59.

    Takahashi, S., Hikino, S., Mori, M., Martinek, J. & Maekawa, S. Supercurrent pumping in Josephson junctions with a half-metallic ferromagnet. Phys. Rev. Lett. 99, 057003 (2007).

    CAS  Google Scholar 

  60. 60.

    Mackenzie, A. P. & Maeno, Y. The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657–712 (2003).

    CAS  Google Scholar 

  61. 61.

    Gong, X.-X. et al. Possible p-wave superconductivity in epitaxial Bi/Ni bilayers. Chin. Phys. Lett. 32, 067402 (2015).

    Google Scholar 

  62. 62.

    Tinkham, M. Introduction to Superconductivity (Dover, 2004).

  63. 63.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Google Scholar 

  64. 64.

    Ohnuma, Y., Adachi, H., Saitoh, E. & Maekawa, S. Enhanced dc spin pumping into a fluctuating ferromagnet near. TC. Phys. Rev. B 89, 174417 (2014).

    Google Scholar 

  65. 65.

    Inoue, M., Ichioka, M. & Adachi, H. Spin pumping into superconductors: a new probe of spin dynamics in a superconducting thin film. Phys. Rev. B 96, 024414 (2017).

    Google Scholar 

  66. 66.

    Umeda, M. et al. Spin-current coherence peak in superconductor/magnet junctions. Appl. Phys. Lett. 112, 232601 (2018).

    Google Scholar 

  67. 67.

    Reyren, N. et al. Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007).

    CAS  Google Scholar 

  68. 68.

    He, S. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nat. Mater. 12, 605–610 (2013).

    CAS  Google Scholar 

  69. 69.

    Sau, J. D., Lutchyn, R. M., Tewari, S. & Das Sarma, S. Generic new platform for topological quantum computation using semiconductor heterostructures. Phys. Rev. Lett. 104, 040502 (2010).

    Google Scholar 

  70. 70.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  Google Scholar 

  71. 71.

    Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    Google Scholar 

  72. 72.

    Motoyama, N., Eisaki, H. & Uchida, S. Magnetic susceptibility of ideal spin 1/2 Heisenberg antiferromagnetic chain systems, Sr2CuO3 and SrCuO2. Phys. Rev. Lett. 76, 3212–3215 (1996).

    CAS  Google Scholar 

  73. 73.

    Hirobe, D. et al. One-dimensional spinon spin currents. Nat. Phys. 13, 30–34 (2016).

    Google Scholar 

  74. 74.

    Chen, C.-Z., Sun, Q.-f, Wang, F. & Xie, X. C. Detection of spinons via spin transport. Phys. Rev. B 88, 041405 (2013).

    Google Scholar 

  75. 75.

    Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    CAS  Google Scholar 

  76. 76.

    Yuan, W. et al. Experimental signatures of spin superfluid ground state in canted antiferromagnet Cr2O3 via nonlocal spin transport. Sci. Adv. 4, eaat1098 (2018).

    Google Scholar 

  77. 77.

    Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS  Google Scholar 

  78. 78.

    Adachi, H., Uchida, K.-i, Saitoh, E. & Maekawa, S. Theory of the spin Seebeck effect. Rep. Prog. Phys. 76, 036501 (2013).

    Google Scholar 

  79. 79.

    Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    CAS  Google Scholar 

  80. 80.

    Cornelissen, L. J., Peters, K. J. H., Bauer, G. E. W., Duine, R. A. & van Wees, B. J. Magnon spin transport driven by the magnon chemical potential in a magnetic insulator. Phys. Rev. B 94, 014412 (2016).

    Google Scholar 

  81. 81.

    Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    CAS  Google Scholar 

  82. 82.

    Valet, T. & Fert, A. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48, 7099 (1993).

    CAS  Google Scholar 

  83. 83.

    Shan, J. et al. Criteria for accurate determination of the magnon relaxation length from the nonlocal spin Seebeck effect. Phys. Rev. B 96, 184427 (2017).

    Google Scholar 

  84. 84.

    Lebrun, R. et al. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 561, 222–225 (2018).

    CAS  Google Scholar 

  85. 85.

    Xing, W. et al. Magnon transport in quasi-two-dimensional van der Waals antiferromagnets. Phys. Rev. X 9, 011026 (2019).

    CAS  Google Scholar 

  86. 86.

    Oyanagi, K. et al. Efficient spin transport in a paramagnetic insulator. Preprint at https://arxiv.org/abs/1811.11972 (2018).

  87. 87.

    Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Google Scholar 

  88. 88.

    Okamoto, S. Spin injection and spin transport in paramagnetic insulators. Phys. Rev. B 93, 064421 (2016).

    Google Scholar 

  89. 89.

    Qiu, Z. et al. Spin-current probe for phase transition in an insulator. Nat. Commun. 7, 12670 (2016).

    CAS  Google Scholar 

  90. 90.

    Frangou, L. et al. Enhanced spin pumping efficiency in antiferromagnetic IrMn thin films around the magnetic phase transition. Phys. Rev. Lett. 116, 077203 (2016).

    CAS  Google Scholar 

  91. 91.

    Kamra, A., Keshtgar, H., Yan, P. & Bauer, G. E. W. Coherent elastic excitation of spin waves. Phys. Rev. B 91, 104409 (2015).

    Google Scholar 

  92. 92.

    Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).

    CAS  Google Scholar 

  93. 93.

    Kikkawa, T. et al. Magnon polarons in the spin Seebeck effect. Phys. Rev. Lett. 117, 207203 (2016).

    Google Scholar 

  94. 94.

    Hayashi, H. & Ando, K. Spin pumping driven by magnon polarons. Phys. Rev. Lett. 121, 237202 (2018).

    CAS  Google Scholar 

  95. 95.

    Holanda, J., Maior, D. S., Azevedo, A. & Rezende, S. M. Detecting the phonon spin in magnon–phonon conversion experiments. Nat. Phys. 14, 500–506 (2018).

    CAS  Google Scholar 

  96. 96.

    Hu, C.-M. Dawn of cavity spintronics. Phys. Canada 72, 76 (2016).

    Google Scholar 

  97. 97.

    Soykal, Ö. O. & Flatté, M. E. Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010).

    CAS  Google Scholar 

  98. 98.

    Bai, L. et al. Spin pumping in electrodynamically coupled magnon-photon systems. Phys. Rev. Lett. 114, 227201 (2015).

    Google Scholar 

  99. 99.

    Halperin, B. I. & Hohenberg, P. C. Hydrodynamic theory of spin waves. Phys. Rev. 188, 898–918 (1969).

    CAS  Google Scholar 

  100. 100.

    Sonin, E. B. Analogs of superfluid currents for spins and electron-hole pairs. Zh. Eksp. Teor. Fiz. 74, 2097–2111 (1978).

    CAS  Google Scholar 

  101. 101.

    Sonin, E. B. Spin currents and spin superfluidity. Adv. Phys. 59, 181–255 (2010).

    Google Scholar 

  102. 102.

    Demokritov, S. O. et al. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping. Nature 443, 430–433 (2006).

    CAS  Google Scholar 

  103. 103.

    Demidov, V. E., Dzyapko, O., Demokritov, S. O., Melkov, G. A. & Slavin, A. N. Observation of spontaneous coherence in bose-einstein condensate of magnons. Phys. Rev. Lett. 100, 047205 (2008).

    CAS  Google Scholar 

  104. 104.

    Bozhko, D. A. et al. Supercurrent in a room-temperature Bose-Einstein magnon condensate. Nat. Phys. 12, 1057–1062 (2016).

    CAS  Google Scholar 

  105. 105.

    Sun, Q.-f, Jiang, Z.-t, Yu, Y. & Xie, X. C. Spin superconductor in ferromagnetic graphene. Phys. Rev. B 84, 214501 (2011).

    Google Scholar 

  106. 106.

    Sun, Q.-f & Xie, X. C. Spin-polarized v = 0 state of graphene: A spin superconductor. Phys. Rev. B 87, 245427 (2013).

    Google Scholar 

  107. 107.

    Bao, Z.-q, Xie, X. C. & Sun, Q.-f Ginzburg-Landau-type theory of spin superconductivity. Nat. Commun. 4, 2951 (2013).

    Google Scholar 

  108. 108.

    Takei, S., Yacoby, A., Halperin, B. I. & Tserkovnyak, Y. Spin Superfluidity in the v = 0 quantum Hall state of graphene. Phys. Rev. Lett. 116, 216801 (2016).

    Google Scholar 

  109. 109.

    Chen, H., Kent, A. D., MacDonald, A. H. & Sodemann, I. Nonlocal transport mediated by spin supercurrents. Phys. Rev. B 90, 220401 (2014).

    Google Scholar 

  110. 110.

    Takei, S. & Tserkovnyak, Y. Superfluid spin transport through easy-plane ferromagnetic insulators. Phys. Rev. Lett. 112, 227201 (2014).

    Google Scholar 

  111. 111.

    Sun, C., Nattermann, T. & Pokrovsky, V. L. Unconventional superfluidity in yttrium iron garnet films. Phys. Rev. Lett. 116, 257205 (2016).

    Google Scholar 

  112. 112.

    Takei, S., Halperin, B. I., Yacoby, A. & Tserkovnyak, Y. Superfluid spin transport through antiferromagnetic insulators. Phys. Rev. B 90, 094408 (2014).

    Google Scholar 

  113. 113.

    Qaiumzadeh, A., Skarsvåg, H., Holmqvist, C. & Brataas, A. Spin superfluidity in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 118, 137201 (2017).

    Google Scholar 

  114. 114.

    Sonin, E. B. Superfluid spin transport in ferro- and antiferromagnets. Phys. Rev. B 99, 104423 (2019).

    CAS  Google Scholar 

  115. 115.

    Takei, S. & Tserkovnyak, Y. Nonlocal magnetoresistance mediated by spin superfluidity. Phys. Rev. Lett. 115, 156604 (2015).

    Google Scholar 

  116. 116.

    Liu, Y., Yin, G., Zang, J., Lake, R. K. & Barlas, Y. Spin-Josephson effects in exchange coupled antiferromagnetic insulators. Phys. Rev. B 94, 094434 (2016).

    Google Scholar 

  117. 117.

    Nomura, K. & MacDonald, A. H. Quantum Hall ferromagnetism in graphene. Phys. Rev. Lett. 96, 256602 (2006).

    Google Scholar 

  118. 118.

    Young, A. F. et al. Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state. Nature 505, 528–532 (2013).

    Google Scholar 

  119. 119.

    Jedema, F. J., Filip, A. T. & van Wees, B. J. Electrical spin injection and accumulation at room temperature in an all-metal mesoscopic spin valve. Nature 410, 345–348 (2001).

    CAS  Google Scholar 

  120. 120.

    Stepanov, P. et al. Long-distance spin transport through a graphene quantum Hall antiferromagnet. Nat. Phys. 14, 907–911 (2018).

    CAS  Google Scholar 

  121. 121.

    Zapf, V., Jaime, M. & Batista, C. D. Bose-Einstein condensation in quantum magnets. Rev. Mod. Phys. 86, 563–614 (2014).

    CAS  Google Scholar 

  122. 122.

    Chung, S. B., Kim, S. K., Lee, K. H. & Tserkovnyak, Y. Cooper-pair spin current in a strontium ruthenate heterostructure. Phys. Rev. Lett. 121, 167001 (2018).

    CAS  Google Scholar 

  123. 123.

    Giamarchi, T., Ruegg, C. & Tchernyshyov, O. Bose-Einstein condensation in magnetic insulators. Nat. Phys. 4, 198–204 (2008).

    CAS  Google Scholar 

  124. 124.

    Qi, X. & Zhang, S. The quantum spin Hall effect and topological insulators. Phys. Today 63, 33–38 (2010).

    CAS  Google Scholar 

  125. 125.

    Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Google Scholar 

  126. 126.

    Matsuo, M., Ieda, Ji, Saitoh, E. & Maekawa, S. Effects of mechanical rotation on spin currents. Phys. Rev. Lett. 106, 076601 (2011).

    Google Scholar 

  127. 127.

    Xu, B., Ohtsuki, T. & Shindou, R. Integer quantum magnon Hall plateau-plateau transition in a spin-ice model. Phys. Rev. B 94, 220403 (2016).

    Google Scholar 

  128. 128.

    Nakata, K., Kim, S. K., Klinovaja, J. & Loss, D. Magnonic topological insulators in antiferromagnets. Phys. Rev. B 96, 224414 (2017).

    Google Scholar 

  129. 129.

    Yao, W. et al. Topological spin excitations in a three-dimensional antiferromagnet. Nat. Phys. 14, 1011–1015 (2018).

    CAS  Google Scholar 

  130. 130.

    Yamashita, M. et al. Highly mobile gapless excitations in a two-dimensional candidate quantum spin liquid. Science 328, 1246–1248 (2010).

    CAS  Google Scholar 

Download references

Acknowledgements

W.H. acknowledges the financial support from National Basic Research Programs of China (no. 2015CB921104), National Natural Science Foundation of China (no. 11574006), and the Strategic Priority Research Program of Chinese Academy of Sciences (no. XDB28000000). S.M. acknowledges the financial support from ERATO- JST (JPMJER1402), and KAKENHI (no. 26103005, no. JP16H04023 and no. JP26247063) from MEXT, Japan. X.C.X. acknowledges the financial support from National Basic Research Programs of China (no. 2015CB921102), National Natural Science Foundation of China (no. 11534001), and the Strategic Priority Research Program of Chinese Academy of Sciences (no. XDB28000000).

Author information

Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors.

Corresponding author

Correspondence to Wei Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, W., Maekawa, S. & Xie, XC. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020). https://doi.org/10.1038/s41563-019-0456-7

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing