Organic mixed ionic–electronic conductors

Abstract

Materials that efficiently transport and couple ionic and electronic charge are key to advancing a host of technological developments for next-generation bioelectronic, optoelectronic and energy storage devices. Here we highlight key progress in the design and study of organic mixed ionic–electronic conductors (OMIECs), a diverse family of soft synthetically tunable mixed conductors. Across applications, the same interrelated fundamental physical processes dictate OMIEC properties and determine device performance. Owing to ionic and electronic interactions and coupled transport properties, OMIECs demand special understanding beyond knowledge derived from the study of organic thin films and membranes meant to support either electronic or ionic processes only. We address seemingly conflicting views and terminology regarding charging processes in these materials, and highlight recent approaches that extend fundamental understanding and contribute to the advancement of materials. Further progress is predicated on multimodal and multi-scale approaches to overcome lingering barriers to OMIEC design and implementation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Material classes of OMIECs.
Fig. 2: Processes in OMIECs.
Fig. 3: Typical configurations of OMIEC-based devices.
Fig. 4: Understanding interrelations in OMIECs.
Fig. 5: The profound influence of electrolyte on film structural characteristics.
Fig. 6: Multi-scale microstructure and associated techniques for studying OMIECs.

References

  1. 1.

    Elschner, A., Kirchmeyer, S., Lovenich, W., Merker, U. & Reuter, K. PEDOT: Principles and Applications of an Intrinsically Conductive Polymer (CRC, 2010).

  2. 2.

    Huang, F., Wu, H. & Cao, Y. Water /alcohol soluble conjugated polymers as highly efficient electron transporting/injection layer in optoelectronic devices. Chem. Soc. Rev. 39, 2500–2521 (2010).

    CAS  Google Scholar 

  3. 3.

    Snook, G. A., Kao, P. & Best, A. S. Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011).

    CAS  Google Scholar 

  4. 4.

    Liang, Y., Tao, Z. & Chen, J. Organic electrode materials for rechargeable lithium batteries. Adv. Energy Mater. 2, 742–769 (2012).

    CAS  Google Scholar 

  5. 5.

    Smela, E. Conjugated polymer actuators for biomedical applications. Adv. Mater. 15, 481–494 (2003).

    CAS  Google Scholar 

  6. 6.

    Pei, Q., Yu, G., Zhang, C., Yang, Y. & Heeger, A. J. Polymer light-emitting electrochemical cells. Science 269, 1086–1088 (1995).

    CAS  Google Scholar 

  7. 7.

    Jang, J., Ha, J. & Cho, J. Fabrication of water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles for inkjet-printed chemical-sensor applications. Adv. Mater. 19, 1772–1775 (2007).

    CAS  Google Scholar 

  8. 8.

    Ludwig, K. A., Uram, J. D., Yang, J., Martin, D. C. & Kipke, D. R. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film. J. Neural Eng. 3, 59 (2006).

    Google Scholar 

  9. 9.

    Isaksson, J. et al. Electronic control of Ca2+ signalling in neuronal cells using an organic electronic ion pump. Nat. Mater. 6, 673–679 (2007).

    CAS  Google Scholar 

  10. 10.

    Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  11. 11.

    van de Burgt, Y. et al. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16, 414–418 (2017).

    Google Scholar 

  12. 12.

    Sunarso, J. et al. Mixed ionic–electronic conducting (MIEC) ceramic-based membranes for oxygen separation. J. Membr. Sci. 320, 13–41 (2008).

    CAS  Google Scholar 

  13. 13.

    Chueh, W. C. & Haile, S. M. Electrochemistry of mixed oxygen ion and electron conducting electrodes in solid electrolyte cells. Annu. Rev. Chem. Biomol. Eng. 3, 313–341 (2012).

    CAS  Google Scholar 

  14. 14.

    Li, W., Liu, J. & Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 1, 16023 (2016).

    CAS  Google Scholar 

  15. 15.

    Liu, Y., Duzhko, V. V., Page, Z. A., Emrick, T. & Russell, T. P. Conjugated polymer zwitterions: efficient interlayer materials in organic electronics. Acc. Chem. Res. 49, 2478–2488 (2016).

    CAS  Google Scholar 

  16. 16.

    Stavrinidou, E. et al. Engineering hydrophilic conducting composites with enhanced ion mobility. Phys. Chem. Chem. Phys. 16, 2275–2279 (2014).

    CAS  Google Scholar 

  17. 17.

    Harman, D. G. et al. Poly(3,4-ethylenedioxythiophene):dextran sulfate (PEDOT:DS) – a highly processable conductive organic biopolymer. Acta Biomater. 14, 33–42 (2015).

    CAS  Google Scholar 

  18. 18.

    Cui, X., Hetke, J. F., Wiler, J. A., Anderson, D. J. & Martin, D. C. Electrochemical deposition and characterization of conducting polymer polypyrrole/PSS on multichannel neural probes. Sens. Actuators Phys. 93, 8–18 (2001).

    CAS  Google Scholar 

  19. 19.

    Cao, Y., Yu, G., Heeger, A. J. & Yang, C. Y. Efficient, fast response light‐emitting electrochemical cells: electroluminescent and solid electrolyte polymers with interpenetrating network morphology. Appl. Phys. Lett. 68, 3218–3220 (1996).

    CAS  Google Scholar 

  20. 20.

    Moon, H. C. & Kim, J. K. Phase segregation of poly(3-dodecylthiophene)-block-poly(methyl methacrylate) copolymers. Polymer 54, 5437–5442 (2013).

    CAS  Google Scholar 

  21. 21.

    Gu, Z., Kanto, T., Tsuchiya, K. & Ogino, K. Synthesis of Poly(3-hexylthiophene)-b-poly(ethylene oxide) for application to photovoltaic device. J. Photopolym. Sci. Technol. 23, 405–406 (2010).

    CAS  Google Scholar 

  22. 22.

    Kato, T. et al. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater. 2, 17001 (2017).

    Google Scholar 

  23. 23.

    Patel, S. N. et al. Morphology and thermodynamic properties of a copolymer with an electronically conducting block: poly(3-ethylhexylthiophene)-block-poly(ethylene oxide). Nano Lett. 12, 4901–4906 (2012).

    CAS  Google Scholar 

  24. 24.

    Erothu, H. et al. Synthesis, thermal processing, and thin film morphology of poly(3-hexylthiophene)–poly(styrenesulfonate) block copolymers. Macromolecules 48, 2107–2117 (2015).

    CAS  Google Scholar 

  25. 25.

    Gutacker, A. et al. All-conjugated polyelectrolyte block copolymers. J. Mater. Chem. 20, 1423–1430 (2010).

    CAS  Google Scholar 

  26. 26.

    Chen, X., Zhang, Z., Ding, Z., Liu, J. & Wang, L. Diketopyrrolopyrrole-based conjugated polymers bearing branched oligo(ethylene glycol) side chains for photovoltaic devices. Angew. Chem. 128, 10532–10536 (2016).

    Google Scholar 

  27. 27.

    Brendel, J. C., Schmidt, M. M., Hagen, G., Moos, R. & Thelakkat, M. Controlled synthesis of water-soluble conjugated polyelectrolytes leading to excellent hole transport mobility. Chem. Mater. 26, 1992–1998 (2014).

    CAS  Google Scholar 

  28. 28.

    Inal, S. et al. A high transconductance accumulation mode electrochemical transistor. Adv. Mater. 26, 7450–7455 (2014).

    CAS  Google Scholar 

  29. 29.

    Karlsson, R. H. et al. Iron-catalyzed polymerization of alkoxysulfonate-functionalized 3,4-ethylenedioxythiophene gives water-soluble poly(3,4-ethylenedioxythiophene) of high conductivity. Chem. Mater. 21, 1815–1821 (2009).

    CAS  Google Scholar 

  30. 30.

    Jiang, H., Taranekar, P., Reynolds, J. R. & Schanze, K. S. Conjugated polyelectrolytes: synthesis, photophysics, and applications. Angew. Chem. Int. Ed. 48, 4300–4316 (2009).

    CAS  Google Scholar 

  31. 31.

    Liu, B. & Bazan, G. C. Conjugated Polyelectrolytes: Fundamentals and Applications (Wiley, 2013).

  32. 32.

    Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    CAS  Google Scholar 

  33. 33.

    Giovannitti, A. et al. N-type organic electrochemical transistors with stability in water. Nat. Commun. 7, 13066 (2016).

    CAS  Google Scholar 

  34. 34.

    Savagian, L. R. et al. Balancing charge storage and mobility in an oligo(ether) functionalized dioxythiophene copolymer for organic- and aqueous- based electrochemical devices and transistors. Adv. Mater. 30, 1804647 (2018).

    Google Scholar 

  35. 35.

    Giovannitti, A. et al. Controlling the mode of operation of organic transistors through side-chain engineering. Proc. Natl Acad. Sci. USA 113, 12017–12022 (2016).

    CAS  Google Scholar 

  36. 36.

    Slinker, J. D. et al. Electroluminescent devices from ionic transition metal complexes. J. Mater. Chem. 17, 2976–2988 (2007).

    CAS  Google Scholar 

  37. 37.

    Janoschka, T., Hager, M. D. & Schubert, U. S. Powering up the future: radical polymers for battery applications. Adv. Mater. 24, 6397–6409 (2012).

    CAS  Google Scholar 

  38. 38.

    Moia, D. et al. Design and evaluation of conjugated polymers with polar side chains as electrode materials for electrochemical energy storage in aqueous electrolytes. Energy Environ. Sci. 12, 1349–1357 (2019).

    CAS  Google Scholar 

  39. 39.

    Javier, A. E., Patel, S. N., Hallinan, D. T., Srinivasan, V. & Balsara, N. P. Simultaneous electronic and ionic conduction in a block copolymer: application in lithium battery electrodes. Angew. Chem. Int. Ed. 50, 9848–9851 (2011).

    CAS  Google Scholar 

  40. 40.

    Patel, S. N., Javier, A. E., Stone, G. M., Mullin, S. A. & Balsara, N. P. Simultaneous conduction of electronic charge and lithium ions in block copolymers. ACS Nano 6, 1589–1600 (2012).

    CAS  Google Scholar 

  41. 41.

    Winther-Jensen, B., Winther-Jensen, O., Forsyth, M. & MacFarlane, D. R. High rates of oxygen reduction over a vapor phase–polymerized PEDOT electrode. Science 321, 671–674 (2008).

    CAS  Google Scholar 

  42. 42.

    Rudolph, M. & Ratcliff, E. L. Normal and inverted regimes of charge transfer controlled by density of states at polymer electrodes. Nat. Commun. 8, 1048 (2017).

    CAS  Google Scholar 

  43. 43.

    Mitraka, E. et al. Electrocatalytic production of hydrogen peroxide with poly(3,4-ethylenedioxythiophene) electrodes. Adv. Sustain. Syst. 3, 1800110 (2019).

    Google Scholar 

  44. 44.

    Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Google Scholar 

  45. 45.

    Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    CAS  Google Scholar 

  46. 46.

    Tessler, N., Preezant, Y., Rappaport, N. & Roichman, Y. Charge transport in disordered organic materials and its relevance to thin-film devices: a tutorial review. Adv. Mater. 21, 2741–2761 (2009).

    CAS  Google Scholar 

  47. 47.

    Coropceanu, V. et al. Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    CAS  Google Scholar 

  48. 48.

    Kunugi, Y., Harima, Y., Yamashita, K., Ohta, N. & Ito, S. Charge transport in a regioregular poly(3-octylthiophene)film. J. Mater. Chem. 10, 2673–2677 (2000).

    CAS  Google Scholar 

  49. 49.

    Wang, S., Ha, M., Manno, M., Daniel Frisbie, C. & Leighton, C. Hopping transport and the Hall effect near the insulator–metal transition in electrochemically gated poly(3-hexylthiophene) transistors. Nat. Commun. 3, 1210 (2012).

    Google Scholar 

  50. 50.

    Paulsen, B. D. & Frisbie, C. D. Dependence of conductivity on charge density and electrochemical potential in polymer semiconductors gated with ionic liquids. J. Phys. Chem. C 116, 3132–3141 (2012).

    CAS  Google Scholar 

  51. 51.

    Sato, K. et al. Diffusion-cooperative model for charge transport by redox-active nonconjugated polymers. J. Am. Chem. Soc. 140, 1049–1056 (2018).

    CAS  Google Scholar 

  52. 52.

    Kemper, T. W., Larsen, R. E. & Gennett, T. Density of States and the role of energetic disorder in charge transport in an organic radical polymer in the solid state. J. Phys. Chem. C 119, 21369–21375 (2015).

    CAS  Google Scholar 

  53. 53.

    Joo, Y., Agarkar, V., Sung, S. H., Savoie, B. M. & Boudouris, B. W. A nonconjugated radical polymer glass with high electrical conductivity. Science 359, 1391–1395 (2018).

    CAS  Google Scholar 

  54. 54.

    Collins, S. D. et al. Observing ion motion in conjugated polyelectrolytes with kelvin probe force microscopy. Adv. Electron. Mater. 3, 1700005 (2017).

    Google Scholar 

  55. 55.

    Reenen, S., van, Janssen, R. A. J. & Kemerink, M. Dynamic processes in sandwich polymer light-emitting electrochemical cells. Adv. Funct. Mater. 22, 4547–4556 (2012).

    Google Scholar 

  56. 56.

    Merkle, R. et al. Mixed conductivity of polythiophene-based ionic polymers under controlled conditions. Polymer 132, 216–226 (2017).

    CAS  Google Scholar 

  57. 57.

    Stavrinidou, E. et al. Direct measurement of ion mobility in a conducting polymer. Adv. Mater. 25, 4488–4493 (2013).

    CAS  Google Scholar 

  58. 58.

    Amdursky, N., Głowacki, E. D. & Meredith, P. Macroscale biomolecular electronics and ionics. Adv. Mater. 31, 1802221 (2019).

    Google Scholar 

  59. 59.

    Park, M., Zhang, X., Chung, M., Less, G. B. & Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 195, 7904–7929 (2010).

    CAS  Google Scholar 

  60. 60.

    Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    CAS  Google Scholar 

  61. 61.

    Barsoukov, E. & Macdonald, J. R. Impedance Spectroscopy: Theory, Experiment, and Applications (Wiley, 2018).

  62. 62.

    Garcia-Belmonte, G., Bisquert, J. & Popkirov, G. S. Determination of the electronic conductivity of polybithiophene films at different doping levels using in situ electrochemical impedance measurements. Appl. Phys. Lett. 83, 2178–2180 (2003).

    CAS  Google Scholar 

  63. 63.

    Ren, X. & Pickup, P. G. Ion transport in polypyrrole and a polypyrrole/polyanion composite. J. Phys. Chem. 97, 5356–5362 (1993).

    CAS  Google Scholar 

  64. 64.

    Sheliakina, M., Mostert, A. B. & Meredith, P. Decoupling ionic and electronic currents in melanin. Adv. Funct. Mater. 28, 1805514 (2018).

    Google Scholar 

  65. 65.

    Bisquert, J. et al. A review of recent results on electrochemical determination of the density of electronic states of nanostructured metal-oxide semiconductors and organic hole conductors. Inorganica Chim. Acta 361, 684–698 (2008).

    CAS  Google Scholar 

  66. 66.

    Bisquert, J., Garcia‐Belmonte, G. & Pitarch, Á. An explanation of anomalous diffusion patterns observed in electroactive materials by impedance methods. ChemPhysChem 4, 287–292 (2003).

    CAS  Google Scholar 

  67. 67.

    Jamnik, J. & Maier, J. Treatment of the impedance of mixed conductors equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146, 4183–4188 (1999).

    CAS  Google Scholar 

  68. 68.

    Bernards, D. A. & Malliaras, G. G. Steady‐state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007).

    CAS  Google Scholar 

  69. 69.

    Rivnay, J. et al. Organic electrochemical transistors for cell-based impedance sensing. Appl. Phys. Lett. 106, 043301 (2015).

    Google Scholar 

  70. 70.

    Trefz, D. et al. Electrochemical investigations of the N-type semiconducting polymer P(NDI2OD-T2) and its monomer: new insights in the reduction behavior. J. Phys. Chem. C 119, 22760–22771 (2015).

    CAS  Google Scholar 

  71. 71.

    Kaake, L. G. & Zhu, X.-Y. Charge transport, nanostructure, and the mott insulator-to-metal transition in poly(3-hexylthiophene). J. Phys. Chem. C 112, 16174–16177 (2008).

    CAS  Google Scholar 

  72. 72.

    Mostert, A. B. et al. Role of semiconductivity and ion transport in the electrical conduction of melanin. Proc. Natl Acad. Sci. USA 109, 8943–8947 (2012).

    CAS  Google Scholar 

  73. 73.

    Tezuka, Y., Ohyama, S., Ishii, T. & Aoki, K. Observation of propagation speed of conductive front in electrochemical doping process of polypyrrole films. Bull. Chem. Soc. Jpn 64, 2045–2051 (1991).

    CAS  Google Scholar 

  74. 74.

    Aoki, K., Aramoto, T. & Hoshino, Y. Photographic measurements of propagation speeds of the conducting zone in polyaniline films during electrochemical switching. J. Electroanal. Chem. 340, 127–135 (1992).

    CAS  Google Scholar 

  75. 75.

    Carlberg, J. C. & Inganäs, O. Fast optical spectroscopy of the electrochemical doping of poly(3,4‐ethylenedioxythiophene). J. Electrochem. Soc. 145, 3810–3814 (1998).

    CAS  Google Scholar 

  76. 76.

    Wang, X. & Smela, E. Experimental studies of ion transport in PPy(DBS). J. Phys. Chem. C 113, 369–381 (2009).

    CAS  Google Scholar 

  77. 77.

    Stavrinidou, E., Sessolo, M., Winther-Jensen, B., Sanaur, S. & Malliaras, G. G. A physical interpretation of impedance at conducting polymer/electrolyte junctions. AIP Adv. 4, 017127 (2014).

    Google Scholar 

  78. 78.

    Feldberg, S. W. Reinterpretation of polypyrrole electrochemistry. Consideration of capacitive currents in redox switching of conducting polymers. J. Am. Chem. Soc. 106, 4671–4674 (1984).

    CAS  Google Scholar 

  79. 79.

    Yeu, T., Nguyen, T. V. & White, R. E. A mathematical model for predicting cyclic voltammograms of electronically conductive polypyrrole. J. Electrochem. Soc. 135, 1971–1976 (1988).

    CAS  Google Scholar 

  80. 80.

    Friedlein, J. T. et al. Influence of disorder on transfer characteristics of organic electrochemical transistors. Appl. Phys. Lett. 111, 023301 (2017).

    Google Scholar 

  81. 81.

    Tybrandt, K., Zozoulenko, I. V. & Berggren, M. Chemical potential–electric double layer coupling in conjugated polymer–polyelectrolyte blends. Sci. Adv. 3, eaao3659 (2017).

    Google Scholar 

  82. 82.

    Facchetti, A. π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2011).

    CAS  Google Scholar 

  83. 83.

    Zhang, H. & Shen, P. K. Recent development of polymer electrolyte membranes for fuel cells. Chem. Rev. 112, 2780–2832 (2012).

    CAS  Google Scholar 

  84. 84.

    Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    CAS  Google Scholar 

  85. 85.

    Cendra, C. et al. Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2019).

    Google Scholar 

  86. 86.

    Slinker, J. D. et al. Direct measurement of the electric-field distribution in a light-emitting electrochemical cell. Nat. Mater. 6, 894–899 (2007).

    CAS  Google Scholar 

  87. 87.

    Matyba, P., Maturova, K., Kemerink, M., Robinson, N. D. & Edman, L. The dynamic organic p–n junction. Nat. Mater. 8, 672–676 (2009).

    CAS  Google Scholar 

  88. 88.

    Francis, C. et al. Raman spectroscopy and microscopy of electrochemically and chemically doped high-mobility semiconducting polymers. J. Mater. Chem. C. 5, 6176–6184 (2017).

    CAS  Google Scholar 

  89. 89.

    Wada, Y., Enokida, I., Yamamoto, J. & Furukawa, Y. Raman imaging of carrier distribution in the channel of an ionic liquid-gated transistor fabricated with regioregular poly(3-hexylthiophene). Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 197, 166–169 (2018).

    CAS  Google Scholar 

  90. 90.

    Smela, E. & Gadegaard, N. Surprising volume change in PPy(DBS): an atomic force microscopy study. Adv. Mater. 11, 953–957 (1999).

    CAS  Google Scholar 

  91. 91.

    Flagg, L. Q. et al. Polymer crystallinity controls water uptake in glycol side-chain polymer organic electrochemical transistors. J. Am. Chem. Soc. 141, 4345–4354 (2019).

    CAS  Google Scholar 

  92. 92.

    ElMahmoudy, M. et al. Tailoring the electrochemical and mechanical properties of PEDOT:PSS films for bioelectronics. Macromol. Mater. Eng. 302, 1600497 (2017).

    Google Scholar 

  93. 93.

    Naoi, K., Lien, M. & Smyrl, W. H. Quartz crystal microbalance study: ionic motion across conducting polymers. J. Electrochem. Soc. 138, 440–445 (1991).

    CAS  Google Scholar 

  94. 94.

    Qiu, Y.-J. & Reynolds, J. R. Dopant anion controlled ion transport behavior of polypyrrole. Polym. Eng. Sci. 31, 417–421 (1991).

    CAS  Google Scholar 

  95. 95.

    Wang, S., Li, F., Easley, A. D. & Lutkenhaus, J. L. Real-time insight into the doping mechanism of redox-active organic radical polymers. Nat. Mater. 18, 69–75 (2019).

    CAS  Google Scholar 

  96. 96.

    Guardado, J. O. & Salleo, A. Structural effects of gating poly(3-hexylthiophene) through an ionic liquid. Adv. Funct. Mater. 27, 1701791 (2017).

    Google Scholar 

  97. 97.

    Rivnay, J. et al. Structural control of mixed ionic and electronic transport in conducting polymers. Nat. Commun. 7, 11287 (2016).

    Google Scholar 

  98. 98.

    Thelen, J. L. et al. Relationship between mobility and lattice strain in electrochemically doped poly(3-hexylthiophene). ACS Macro Lett. 4, 1386–1391 (2015).

    CAS  Google Scholar 

  99. 99.

    Thomas, E. M. et al. X-Ray scattering reveals ion-induced microstructural changes during electrochemical gating of poly(3-Hexylthiophene). Adv. Funct. Mater. 28, 1803687 (2018).

    Google Scholar 

  100. 100.

    Savva, A., Wustoni, S. & Inal, S. Ionic-to-electronic coupling efficiency in PEDOT:PSS films operated in aqueous electrolytes. J. Mater. Chem. C 6, 12023–12030 (2018).

    CAS  Google Scholar 

  101. 101.

    Nightingale, J., Wade, J., Moia, D., Nelson, J. & Kim, J.-S. Impact of molecular order on polaron formation in conjugated polymers. J. Phys. Chem. C 122, 29129–29140 (2018).

    CAS  Google Scholar 

  102. 102.

    Giridharagopal, R. et al. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 16, 737–742 (2017).

    CAS  Google Scholar 

  103. 103.

    Franco-Gonzalez, J. F. & Zozoulenko, I. V. Molecular dynamics study of morphology of doped PEDOT: from solution to dry phase. J. Phys. Chem. B 121, 4299–4307 (2017).

    CAS  Google Scholar 

  104. 104.

    Modarresi, M., Felipe Franco-Gonzalez, J. & Zozoulenko, I. Morphology and ion diffusion in PEDOT:Tos. A coarse grained molecular dynamics simulation. Phys. Chem. Chem. Phys. 20, 17188–17198 (2018).

    CAS  Google Scholar 

  105. 105.

    Dong, B. X. et al. Influence of side-chain chemistry on structure and ionic conduction characteristics of polythiophene derivatives: a computational and experimental study. Chem. Mater. 31, 1418–1429 (2019).

    CAS  Google Scholar 

  106. 106.

    Sjöström, T. A. et al. A decade of iontronic delivery devices. Adv. Mater. Technol. 3, 1700360 (2018).

    Google Scholar 

  107. 107.

    van Reenen, S., Akatsuka, T., Tordera, D., Kemerink, M. & Bolink, H. J. Universal transients in polymer and ionic transition metal complex light-emitting electrochemical cells. J. Am. Chem. Soc. 135, 886–891 (2013).

    Google Scholar 

  108. 108.

    Renna, L. A., Lenef, J. D., Bag, M. & Venkataraman, D. Mixed ionic–electronic conduction in binary polymer nanoparticle assemblies. Adv. Mater. Interfaces 4, 1700397 (2017).

    Google Scholar 

  109. 109.

    McNaught, A. D., Wilkinson, A., Jenkins, A. D. & International Union of Pure and Applied Chemistry IUPAC Compendium of Chemical Terminology: The Gold Book (International Union of Pure and Applied Chemistry, 2006).

  110. 110.

    Berggren, M. & Malliaras, G. G. How conducting polymer electrodes operate. Science 364, 233–234 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

B.P. and J.R. gratefully acknowledge support from the National Science Foundation grant no. NSF DMR-1751308. K.T. and E.S. gratefully acknowledge support from the Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (faculty grant SFO-Mat-LiU no. 2009-00971). K.T. was also supported by the Swedish Foundation for Strategic Research and E.S. is supported by Vetenskapsrådet VR-2017-04910.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Rivnay.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paulsen, B.D., Tybrandt, K., Stavrinidou, E. et al. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020). https://doi.org/10.1038/s41563-019-0435-z

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing