Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Triple ionic–electronic conducting oxides for next-generation electrochemical devices

Abstract

Triple ionic–electronic conductors (TIECs) are materials that can simultaneously transport electronic species alongside two ionic species. The recent emergence of TIECs provides intriguing opportunities to maximize performance in a variety of electrochemical devices, including fuel cells, membrane reactors and electrolysis cells. However, the potential application of these nascent materials is limited by lack of fundamental knowledge of their transport properties and electrocatalytic activity. The goal of this Review is to summarize and analyse the current understanding of TIEC transport and electrochemistry in single-phase materials, including defect formation and conduction mechanisms. We particularly focus on the discovery criteria (for example, crystal structure and ion electronegativity), design principles (for example, cation and anion substitution chemistry) and operating conditions (for example, atmosphere) of materials that enable deliberate tuning of the conductivity of each charge carrier. Lastly, we identify important areas for further advances, including higher chemical stability, lower operating temperatures and discovery of n-type TIEC materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Typical structure of TIEC materials.
Fig. 2: TIECs as protonic ceramic fuel cell positrodes.
Fig. 3: Transport in TIECs.
Fig. 4: Factors that influence TIEC performance.
Fig. 5: Composition effects on electronic conductivity, oxygen non-stoichiometry, and proton uptake.
Fig. 6: Conceptual band diagram of an n-type TIEC.

Similar content being viewed by others

References

  1. Sun, C., Hui, R. & Roller, J. Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010).

    CAS  Google Scholar 

  2. Baumann, F. S., Maier, J. & Fleig, J. The polarization resistance of mixed conducting SOFC cathodes: a comparative study using thin film model electrodes. Solid State Ionics 179, 1198–1204 (2008).

    CAS  Google Scholar 

  3. Tao, S. & Irvine, J. T. S. Discovery and characterization of novel oxide anodes for solid oxide fuel cells. Chem. Rec. 4, 83–95 (2004).

    CAS  Google Scholar 

  4. Fabbri, E., Pergolesi, D. & Traversa, E. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem. Soc. Rev. 39, 4355 (2010).

    CAS  Google Scholar 

  5. Duan, C. et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015).

    CAS  Google Scholar 

  6. An, H. et al. A 5 × 5 cm2 protonic ceramic fuel cell with a power density of 1.3 W cm–2 at 600°C. Nat. Energy 3, 870–875 (2018).

    CAS  Google Scholar 

  7. Li, W. et al. High performing triple-conductive Pr2NiO4+δ anode for proton-conducting steam solid oxide electrolysis cell. J. Mater. Chem. A 6, 18057–18066 (2018).

    CAS  Google Scholar 

  8. Zhang, Y. et al. Recent progress on advanced materials for solid-oxide fuel cells operating below 500°C. Adv. Mater. 29, 1700132 (2017).

    Google Scholar 

  9. Choi, S. et al. Exceptional power density and stability at intermediate temperatures in protonic ceramic fuel cells. Nat. Energy 3, 202–210 (2018).

    CAS  Google Scholar 

  10. Sun, X., Simonsen, S. C., Norby, T. & Chatzitakis, A. Composite membranes for high temperature PEM fuel cells and electrolysers: a critical review. Membranes 9, 83 (2019).

    CAS  Google Scholar 

  11. O’Hayre, R., Cha, S.-W., Colella, W. & Prinz, F. B. Fuel Cell Fundamentals (Wiley, 2009).

  12. Wang, L., Merkle, R. & Maier, J. Surface kinetics and mechanism of oxygen incorporation into Ba1−xSrxCoyFe1−yO3−δ SOFC microelectrodes. J. Electrochem. Soc. 157, B1802–B1808 (2010).

    CAS  Google Scholar 

  13. Tong, J., Duan, C., Hook, D., Chen, Y. & Tong, J. Zr and Y co-doped perovskite as a stable, high performance cathode for solid oxide fuel cells operating below 500°C. Energy Environ. Sci. 176, 176–182 (2017).

    Google Scholar 

  14. Xia, C. et al. Shaping triple-conducting semiconductor BaCo0.4Fe0.4Zr0.1Y0.1O3–δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 10, 1707 (2019).

    Google Scholar 

  15. Li, X. et al. Redox inactive ion meliorated BaCo0.4Fe0.4Zr0.1Y0.1O3−δ perovskite oxides as efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 6, 17288–17296 (2018).

    CAS  Google Scholar 

  16. Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019).

    CAS  Google Scholar 

  17. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    CAS  Google Scholar 

  18. Muñoz-García, A. B. & Pavone, M. K-doped Sr2Fe1.5Mo0.5O6−δ predicted as a bifunctional catalyst for air electrodes in proton-conducting solid oxide electrochemical cells. J. Mater. Chem. A 5, 12735–12739 (2017).

    Google Scholar 

  19. Kee, R. J. et al. Modeling the steady-state and transient response of polarized and non-polarized proton-conducting doped-perovskite membranes. J. Electrochem. Soc. 160, 290–300 (2013).

    Google Scholar 

  20. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS  Google Scholar 

  21. Demin, A. K., Gorbova, E. V., Glumov, M. V. & Tsiakaras, P. E. Charge transfer in mixed proton, oxygen ion and electron solid oxide conductor. Ionics 11, 289–293 (2005).

    CAS  Google Scholar 

  22. Virkar, A. V. Transport of H2, O2 and H2O through single-phase, two-phase and multi-phase mixed proton, oxygen ion, and electron hole conductors. Solid State Ionics 140, 275–283 (2001).

    CAS  Google Scholar 

  23. Sanders, M. D. & O’Hayre, R. P. Coupled transport and uphill permeation of steam and oxygen in a dense ceramic membrane. J. Memb. Sci. 376, 96–101 (2011).

    CAS  Google Scholar 

  24. Kreuer, K. D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides. Solid State Ionics 125, 285–302 (1999).

    CAS  Google Scholar 

  25. Cherry, M., Islam, M. S. & Catlow, C. R. A. Oxygen ion migration in perovskite-type oxides. J. Solid State Chem. 118, 125–132 (1995).

    CAS  Google Scholar 

  26. Chroneos, A., Yildiz, B., Tarancón, A., Parfitt, D. & Kilner, J. A. Oxygen diffusion in solid oxide fuel cell cathode and electrolyte materials: mechanistic insights from atomistic simulations. Energy Environ. Sci. 4, 2774 (2011).

    CAS  Google Scholar 

  27. De Souza, R. A. Limits to the rate of oxygen transport in mixed-conducting oxides. J. Mater. Chem. A 5, 20334–20350 (2017).

    Google Scholar 

  28. Schirmer, O. F. O bound small polarons in oxide materials. J. Phys. Condens. Matter 18, R667–R704 (2006).

    CAS  Google Scholar 

  29. Rettie, A. J. E., Chemelewski, W. D., Emin, D. & Mullins, C. B. Unravelling small-polaron transport in metal oxide photocatalysts. J. Phys. Chem. Lett 7, 27 (2016).

    Google Scholar 

  30. Neagu, D. & Irvine, J. T. S. Enhancing electronic conductivity in strontium titanates through correlated A and B-site doping. Chem. Mater 23, 1607–1617 (2011).

    CAS  Google Scholar 

  31. Raccah, P. M. & Goodenough, J. B. A localized-electron to collective-electron transition in the system (La, Sr)CoO3. J. Appl. Phys. 39, 1209–1210 (1968).

    CAS  Google Scholar 

  32. He, T., Kreuer, K. D., Baikov, Y. M. & Maier, J. Impedance spectroscopic study of thermodynamics and kinetics of a Gd-doped BaCeO3 single crystal. Solid State Ionics 95, 301–308 (1997).

    CAS  Google Scholar 

  33. Tai, L., Nasrallah, M., Anderson, H., Sparlin, D. & Sehlin, S. Structure and electrical properties of La1−xSrxCo1−yFeyO3. Part 1. The system La0.8Sr0.2Co1−yFeyO3. Solid State Ionics 76, 259–271 (1995).

    CAS  Google Scholar 

  34. Raffaelle, R., Anderson, H. U., Sparlin, D. M. & Parris, P. E. Evidence for a crossover from multiple trapping to percolation in the high-temperature electrical conductivity of Mn-doped LaCrO3. Phys. Rev. Lett. 65, 1383–1386 (1990).

    CAS  Google Scholar 

  35. Liu, X. et al. Lattice characteristics, structure stability and oxygen permeability of BaFe1−xYxO3−δ ceramic membranes. J. Memb. Sci. 383, 235–240 (2011).

    CAS  Google Scholar 

  36. Kirkpatrick, S. Percolation and conduction. Rev. Mod. Phys. 45, 574–588 (1973).

    Google Scholar 

  37. Kim, D., Miyoshi, S., Tsuchiya, T. & Yamaguchi, S. Percolation conductivity in BaZrO3–BaFeO3 solid solutions. Solid State Ionics 262, 875–878 (2014).

    CAS  Google Scholar 

  38. Duckers, L. I. Percolation with nearest neighbour interaction. Phys. Lett. 67A, 93–94 (1978).

    Google Scholar 

  39. Azad, A. K. & Irvine, J. T. S. High density and low temperature sintered proton conductor BaCe0.5Zr0.35Sc0.1Zn0.05O3–δ. Solid State Ionics 179, 678–682 (2008).

    CAS  Google Scholar 

  40. Sherafat, Z. et al. Modeling of electrical conductivity in the proton conductor Ba0.85K0.15ZrO3–δ. Electrochim. Acta 165, 443–449 (2015).

    CAS  Google Scholar 

  41. Katahira, K., Kohchi, Y., Shimura, T. & Iwahara, H. Protonic conduction in Zr-substituted BaCeO3. Solid State Ionics 138, 91–98 (2000).

    CAS  Google Scholar 

  42. Grimaud, A. et al. Hydration properties and rate determining steps of the oxygen reduction reaction of perovskite-related oxides as H+-SOFC cathodes. J. Electrochem. Soc. 159, B683–B694 (2012).

    CAS  Google Scholar 

  43. Fabbri, E., Bi, L., Pergolesi, D. & Traversa, E. Towards the next generation of solid oxide fuel cells operating below 600°C with chemically stable proton-conducting electrolytes. Adv. Mater. 24, 195–208 (2012).

    CAS  Google Scholar 

  44. Chen, D., Chen, C., Baiyee, Z. M., Shao, Z. & Ciucci, F. Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices. Chem. Rev. 115, 9869–9921 (2015).

    CAS  Google Scholar 

  45. Poetzsch, D., Merkle, R. & Maier, J. Oxygen reduction at dense thin-film microelectrodes on a proton-conducting electrolyte. I. Considerations on reaction mechanism and electronic leakage effects. J. Electrochem. Soc. 162, 939–950 (2015).

    Google Scholar 

  46. De Souza, R. A. & Kilner, J. A. Oxygen transport in La1–xSrxMn1–yCoyOδ perovskites. Part II. Oxygen surface exchange. Solid State Ionics 126, 153–161 (1999).

    CAS  Google Scholar 

  47. Kilner, J. A., De Souza, R. A. & Fullarton, I. C. Surface exchange of oxygen in mixed conducting perovskite oxides. Solid State Ionics 86–88, 703–709 (1996).

    Google Scholar 

  48. De Souza, R. A. A universal empirical expression for the isotope surface exchange coefficients (k*) of acceptor-doped perovskite and fluorite oxides. Phys. Chem. Chem. Phys. 8, 890–897 (2006).

    Google Scholar 

  49. Sakai, N. et al. Significant effect of water on surface reaction and related electrochemical properties of mixed conducting oxides. Solid State Ionics 175, 387–391 (2004).

    CAS  Google Scholar 

  50. Sakai, N. et al. Effect of water on oxygen transport properties on electrolyte surface in SOFCs. I. Surface reaction mechanism of oxygen isotope exchange on solid oxide electrolytes. J. Electrochem. Soc. 150, A689–A694 (2003).

    CAS  Google Scholar 

  51. Liu, R. R. et al. Influence of water vapor on long-term performance and accelerated degradation of solid oxide fuel cell cathodes. J. Power Sources 196, 7090–7096 (2011).

    CAS  Google Scholar 

  52. Kim, S. H. et al. Degradation of solid oxide fuel cell cathodes accelerated at a high water vapor concentration. J. Fuel Cell Sci. Technol. 7, 021011 (2010).

    Google Scholar 

  53. Hayashi, H. et al. Structural consideration on the ionic conductivity of perovskite-type oxides. Solid State Ionics 122, 1–15 (1999).

    CAS  Google Scholar 

  54. Kilner, J. A. & Brook, R. J. A study of oxygen ion conductivity in doped non-stoichiometric oxides. Solid State Ionics 6, 237–252 (1982).

    CAS  Google Scholar 

  55. Islam, M. Computer modelling of defects and transport in perovskite oxides. Solid State Ionics 154–155, 75–85 (2002).

    Google Scholar 

  56. Kreuer, K. D. Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333–359 (2003).

    CAS  Google Scholar 

  57. Norby, T. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 217–241 (Springer, 2009).

  58. Taskin, A. A., Lavrov, A. N. & Ando, Y. Achieving fast oxygen diffusion in perovskites by cation ordering. Appl. Phys. Lett 86, 91910 (2005).

    Google Scholar 

  59. Bernuy-Lopez, C. et al. Effect of cation ordering on the performance and chemical stability of layered double perovskite cathodes. Materials 11, 196 (2018).

    Google Scholar 

  60. Parfitt, D., Chroneos, A., Taranc, A. & Kilner, J. A. Oxygen ion diffusion in cation ordered/disordered GdBaCo2O5+δ. J. Mater. Chem. 21, 2183–2186 (2011).

    CAS  Google Scholar 

  61. Zohourian, R., Merkle, R., Raimondi, G. & Maier, J. Mixed-conducting perovskites as cathode materials for protonic ceramic fuel cells: understanding the trends in proton uptake. Adv. Funct. Mater. 28, 1801241 (2018).

    Google Scholar 

  62. Arulraj, A., Goutenoire, F., Tabellout, M., Bohnke, O. & Lacorre, P. Synthesis and characterization of the anionic conductor system La2Mo2O9–0.5xFx (x = 0.02−0.30). Chem. Mater. 14, 2492–2498 (2002).

    CAS  Google Scholar 

  63. Animitsa, I., Tarasova, N. & Filinkova, Y. Electrical properties of the fluorine-doped Ba2In2O5. Solid State Ionics 207, 29–37 (2012).

    CAS  Google Scholar 

  64. Gibbs, G. V., Hilí, F. C., Boisen, M. B. & Downs, R. T. Power law relationships between bond length, bond strength and electron density distributions. Phys. Chem. Miner. 25, 585–590 (1998).

    CAS  Google Scholar 

  65. Zhang, Z., Zhu, Y., Zhong, Y., Zhou, W. & Shao, Z. Anion doping: a new strategy for developing high-performance perovskite-type cathode materials of solid oxide fuel cells. Adv. Energy Mater. 7, 1700242 (2017).

    Google Scholar 

  66. Zhao, H. et al. Investigation of mixed conductor BaCo0.7Fe0.3−xYxO3−δ with high oxygen permeability. J. Phys. Chem. C 114, 17975–17981 (2010).

    CAS  Google Scholar 

  67. Suntivich, J. & Shao-Horn, Y. Trend in oxygen reduction reaction on transition metal oxide surfaces. ECS Trans. 58, 715–726 (2013).

    Google Scholar 

  68. Muñoz-García, A. B. & Pavone, M. From oxide to proton conduction: a quantum-chemical perspective on the versatility of Sr2Fe1.5Mo0.5O6−δ-based materials. Int. J. Quantum Chem. 116, 1501–1506 (2016).

    Google Scholar 

  69. Cook, R. L. & Sammells, A. F. On the systematic selection of perovskite solid electrolytes for intermediate temperature fuel cells. Solid State Ionics 45, 311–321 (1991).

    CAS  Google Scholar 

  70. Belova, K., Baskakova, S., Argirusis, C. & Animitsa, I. The effect of F-doping on the conductivity of proton conductor Ba4Ca2Nb2O11. Electrochim. Acta 193, 63–71 (2016).

    CAS  Google Scholar 

  71. Poetzsch, D., Merkle, R. & Maier, J. Proton uptake in the H+-SOFC cathode material Ba0.5Sr0.5Fe0.8Zn0.2O3–δ transition from hydration to hydrogenation with increasing oxygen partial pressure. Faraday Discuss. 182, 129–143 (2015).

    CAS  Google Scholar 

  72. Lee, Y.-L., Kleis, J., Rossmeisl, J., Shao-Horn, Y. & Morgan, D. Prediction of solid oxide fuel cell cathode activity with first-principles descriptors. Energy Environ. Sci. 4, 3966–3970 (2011).

    CAS  Google Scholar 

  73. Peng, R., Wu, T., Liu, W., Liu, X. & Meng, G. Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes. J. Mater. Chem. 20, 6218–6225 (2010).

    CAS  Google Scholar 

  74. Fabbri, E., Pergolesi, D. & Traversa, E. Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells. Sci. Technol. Adv. Mater. 11, 044301 (2010).

    Google Scholar 

  75. Fabbri, E., Markus, I., Bi, L., Pergolesi, D. & Traversa, E. Tailoring mixed proton-electronic conductivity of BaZrO3 by Y and Pr co-doping for cathode application in protonic SOFCs. Solid State Ionics 202, 30–35 (2011).

    CAS  Google Scholar 

  76. Wang, Y., Wang, H., Liu, T., Chen, F. & Xia, C. Improving the chemical stability of BaCe0.8Sm0.2O3−δ electrolyte by Cl doping for proton-conducting solid oxide fuel cell. Electrochem. Commun. 28, 87–90 (2013).

    Google Scholar 

  77. Wang, Y. et al. A2–αA′αBO4-type oxides as cathode materials for IT-SOFCs (A = Pr, Sm; A′ = Sr; B = Fe, Co). Mater. Lett. 60, 1174–1178 (2006).

    CAS  Google Scholar 

  78. Tarasova, N. A. & Animitsa, I. E. Effect of anion doping on mobility of ionic charge carriers in solid solutions based on Ba2In2O5. Russ. J. Electrochem. 49, 698–703 (2013).

    CAS  Google Scholar 

  79. Lagaeva, J., Medvedev, D., Demin, A. & Tsiakaras, P. Insights on thermal and transport features of BaCe0.8–xZrxY0.2O3–δ proton-conducting materials. J. Power Sources 278, 436–444 (2015).

    CAS  Google Scholar 

  80. Kharton, V. V., Viskup, A. P., Naumovich, E. N. & Lapchuk, N. M. Mixed electronic and ionic conductivity of LaCo(M)O3 (M=Ga, Cr, Fe or Ni). I. Oxygen transport in perovskites LaCoO3–LaGaO3. Solid State Ionics 104, 67–78 (1997).

    CAS  Google Scholar 

  81. Walsh, A. & Zunger, A. Instilling defect tolerance in new compounds. Nat. Mater. 16, 964–967 (2017).

    CAS  Google Scholar 

  82. Zohourian, R., Merkle, R. & Maier, J. Proton uptake into the protonic cathode material BaCo0.4Fe0.4Zr0.2O3–δ and comparison to protonic electrolyte materials. Solid State Ionics 299, 64–69 (2017).

    CAS  Google Scholar 

  83. Deng, Z., Zhang, G., Liu, W., Peng, D. & Chen, C. Phase composition, oxidation state and electrical conductivity of SrFe1.5−xCoxOy. Solid State Ionics 152–153, 735–739 (2002).

    Google Scholar 

  84. Muñoz-García, A. B. & Pavone, M. First-principles design of new electrodes for proton-conducting solid-oxide electrochemical cells: A-site doped Sr2Fe1.5Mo0.5O6−δ perovskite. Chem. Mater. 28, 490–500 (2016).

    Google Scholar 

  85. Xu, X. et al. Tailoring cations in a perovskite cathode for proton-conducting solid oxide fuel cells with high performance. J. Mater. Chem. A 7, 20624–20632 (2019).

    CAS  Google Scholar 

  86. Strandbakke, R. et al. Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics 278, 120–132 (2015).

    CAS  Google Scholar 

  87. Ge, L. et al. Properties and performance of A-site deficient (Ba0.5Sr0.5)1−xCo0.8Fe0.2O3−δ for oxygen permeating membrane. J. Memb. Sci. 306, 318–328 (2007).

    CAS  Google Scholar 

  88. Guo, Y., Ran, R., Shao, Z. & Liu, S. Effect of Ba nonstoichiometry on the phase structure, sintering, electrical conductivity and phase stability of BaxCe0.4Zr0.4Y0.2O3−δ (0≤x≤0.20) proton conductors. Int. J. Hydrogen Energy 36, 8450–8460 (2011).

    CAS  Google Scholar 

  89. Yamazaki, Y., Hernandez-Sanchez, R. & Haile, S. M. Cation non-stoichiometry in yttrium-doped barium zirconate: phase behavior, microstructure, and proton conductivity. J. Mater. Chem. 20, 8158–8166 (2010).

    CAS  Google Scholar 

  90. Tarasova, N., Animitsa, I., Denisova, T. & Nevmyvako, R. The influence of fluorine doping on short-range structure in brownmillerite Ba1.95In2O4.9F0.1. Solid State Ionics 275, 47–52 (2015).

    CAS  Google Scholar 

  91. Tarasova, N. & Animitsa, I. Novel proton-conducting oxyfluorides Ba4−0.5xIn2Zr2O11−xFx with perovskite structure. Solid State Ionics 264, 69–75 (2014).

    CAS  Google Scholar 

  92. Tarasova, N. A. et al. Features of the local structure of hydrated fluorine-substituted solid solutions based on Ba2In2O5. Bull. Russ. Acad. Sci. Phys. 78, 730–732 (2014).

    CAS  Google Scholar 

  93. Zhu, X. & Yang, W. Mixed Conducting Ceramic Membranes: Fundamentals, Materials and Applications 95–143 (Springer, 2017).

  94. Pérez-Coll, D., Heras-Juaristi, G., Fagg, D. P. & Mather, G. C. Methodology for the study of mixed transport properties of a Zn-doped SrZr0.9Y0.1O3−δ electrolyte under reducing conditions. J. Mater. Chem. A 3, 11098–11110 (2015).

    Google Scholar 

  95. Zhu, H. et al. Defect incorporation and transport within dense BaZr0.8Y0.2O3−δ (BZY20) proton-conducting membranes. J. Electrochem. Soc. 165, 581–588 (2018).

    Google Scholar 

  96. Fontaine, M.-L., Norby, T., Larring, Y., Grande, T. & Bredesen, R. in Membrane Science and Technology Series (eds. Mallada, R. & Menéndez, M.) 401–446 (Elsevier, 2008).

  97. Balachandran, J., Lin, L., Anchell, J. S., Bridges, C. A. & Ganesh, P. Defect genome of cubic perovskites for fuel cell applications. J. Phys. Chem. C 121, 26637–26647 (2017).

    CAS  Google Scholar 

  98. Liang, L., Wencong, L. & Nianyi, C. On the criteria of formation and lattice distortion of perovskite-type complex halides. J. Phys. Chem. Solids 65, 855–860 (2004).

    Google Scholar 

  99. Yokokawa, H., Sakai, N., Kawada, T. & Dokiya, M. Thermodynamic stability of perovskites and related compounds in some alkaline earth-transition metal-oxygen systems. J. Solid State Chem. 94, 106–120 (1991).

    CAS  Google Scholar 

  100. Li, D., Lv, H., Kang, Y., Markovic, N. M. & Stamenkovic, V. R. Progress in the development of oxygen reduction reaction catalysts for low-temperature fuel cells. Annu. Rev. Chem. Biomol. Eng. 7, 509–532 (2016).

    CAS  Google Scholar 

  101. Cho, Y., Ogawa, M., Oikawa, I., Tuller, H. L. & Takamura, H. Stabilizing coexisting n-type electronic and oxide ion conductivities in donor-doped Ba-In-based oxides under oxidizing conditions: roles of oxygen disorder and electronic structure. Chem. Mater. 31, 2713–2722 (2019).

    CAS  Google Scholar 

  102. Irvine, J. T. S. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 167–182 (Springer, 2009).

  103. Gore, C. M., White, J. O., Wachsman, E. D. & Thangadurai, V. Effect of composition and microstructure on electrical properties and CO2 stability of donor-doped, proton conducting BaCe1−(x+y)ZrxNbyO3. J. Mater. Chem. A 2, 2363–2373 (2014).

    CAS  Google Scholar 

  104. Van de Walle, C. G. & Neugebauer, J. Universal alignment of hydrogen levels in semiconductors, insulators and solutions. Nature 423, 626–628 (2003).

    Google Scholar 

  105. Van de Walle, C. G. & Neugebauer, J. Hydrogen in semiconductors. Annu. Rev. Mater. Res. 36, 179–198 (2006).

    Google Scholar 

  106. Li, S. et al. Intrinsic energy band alignment of functional oxides. Phys. Status Solidi RRL 8, 571–576 (2014).

    CAS  Google Scholar 

  107. Robertson, J. Band offsets, Schottky barrier heights, and their effects on electronic devices. J. Vac. Sci. Technol. A 31, 050821 (2013).

    Google Scholar 

  108. Freysoldt, C. et al. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86, 253–305 (2014).

    Google Scholar 

  109. Goyal, A., Gorai, P., Peng, H., Lany, S. & Stevanović, V. A computational framework for automation of point defect calculations. Comput. Mater. Sci. 130, 1–9 (2017).

    Google Scholar 

  110. Goyal, A. & Stevanović, V. Metastable rocksalt ZnO is p-type dopable. Phys. Rev. Mater. 2, 084603 (2018).

    CAS  Google Scholar 

  111. Lai, W. & Haile, S. M. Impedance spectroscopy as a tool for chemical and electrochemical analysis of mixed conductors: a case study of ceria. J. Am. Ceram. Soc. 88, 2979–2997 (2005).

    CAS  Google Scholar 

  112. Jamnik, J. & Maier, J. Treatment of the impedance of mixed conductors: equivalent circuit model and explicit approximate solutions. J. Electrochem. Soc. 146, 4183–4188 (1999).

    CAS  Google Scholar 

  113. Schichlein, H., Muller, A. C., Voigts, M., Krugel, A. & Ivers-Tiffée, E. Deconvolution of electrochemical impedance spectra for the identification of electrode reaction mechanisms in solid oxide fuel cells. J. Appl. Electrochem. 32, 875–882 (2002).

    CAS  Google Scholar 

  114. Ciucci, F. & Chen, C. Analysis of electrochemical impedance spectroscopy data using the distribution of relaxation times: a Bayesian and hierarchical Bayesian approach. Electrochim. Acta 167, 439–454 (2015).

    CAS  Google Scholar 

  115. Chen, Y. et al. Investigate the proton uptake process of proton/oxygen ion/hole triple conductor BaCo0.4Fe0.4Zr0.1Y0.1O3–δ by electrical conductivity relaxation. J. Power Sources 440, 227122 (2019).

    CAS  Google Scholar 

  116. Lane, J. A. & Kilner, J. A. Measuring oxygen diffusion and oxygen surface exchange by conductivity relaxation. Solid State Ionics 136–137, 997–1001 (2000).

    Google Scholar 

  117. Yoo, H.-I. & Lee, C.-E. Conductivity relaxation patterns of mixed conductor oxides under a chemical potential gradient. Solid State Ionics 180, 326–337 (2009).

    CAS  Google Scholar 

  118. Boukamp, B. A., den Otter, M. W. & Bouwmeester, H. J. M. Transport processes in mixed conducting oxides: combining time domain experiments and frequency domain analysis. J. Solid State Electrochem. 8, 592–598 (2004).

    CAS  Google Scholar 

  119. den Otter, M. W., Bouwmeester, H. J. M., Boukamp, B. A. & Verweij, H. Reactor flush time correction in relaxation experiments. J. Electrochem. Soc. 148, J1–J6 (2001).

    Google Scholar 

  120. Kim, G., Wang, S., Jacobson, A. J. & Chen, C. L. Measurement of oxygen transport kinetics in epitaxial La2NiO4+δ thin films by electrical conductivity relaxation. Solid State Ionics 177, 1461–1467 (2006).

    CAS  Google Scholar 

  121. Yoo, H.-I., Yoon, J.-Y., Ha, J.-S. & Lee, C.-E. Hydration and oxidation kinetics of a proton conductor oxide, SrCe0.95Yb0.05O2.975. Phys. Chem. Chem. Phys. 10, 974–982 (2008).

    CAS  Google Scholar 

  122. Yeh, T. C., Routbort, J. L. & Mason, T. O. Oxygen transport and surface exchange properties of Sr0.5Sm0.5CoO3−δ. Solid State Ionics 232, 138–143 (2013).

    CAS  Google Scholar 

  123. Grimaud, A. et al. Oxygen reduction reaction of PrBaCo2-xFexO5+δ compounds as H+-SOFC cathodes: correlation with physical properties. J. Mater. Chem. A 2, 3594–3604 (2014).

    CAS  Google Scholar 

  124. Rupasov, D., Makarenko, T. & Jacobson, A. J. Oxygen diffusion in Sr3YCo4O10.5: An electrical conductivity relaxation and thermogravimetric analysis approach. Solid State Ionics 265, 68–72 (2014).

    CAS  Google Scholar 

  125. Falkenstein, A., Mueller, D. N., De Souza, R. A. & Martin, M. Chemical relaxation experiments on mixed conducting oxides with large stoichiometry deviations. Solid State Ionics 280, 66–73 (2015).

    CAS  Google Scholar 

  126. Poetzsch, D., Merkle, R. & Maier, J. Proton conductivity in mixed-conducting BSFZ perovskite from thermogravimetric relaxation. Phys. Chem. Chem. Phys. 16, 16446–16453 (2014).

    CAS  Google Scholar 

  127. Kilner, J. A., Berenov, A. & Rossiny, J. in Perovskite Oxide for Solid Oxide Fuel Cells (ed. Ishihara, T.) 95–116 (Springer, 2009).

  128. Mauvy, F. et al. Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient. J. Eur. Ceram. Soc. 24, 1265–1269 (2004).

    CAS  Google Scholar 

  129. Mueller, D. N., De Souza, R. A., Brendt, J., Samuelis, D. & Martin, M. Oxidation states of the transition metal cations in the highly nonstoichiometric perovskite-type oxide Ba0.1Sr0.9Co0.8Fe0.2O3−δ. J. Mater. Chem. 19, 1960–1963 (2009).

    CAS  Google Scholar 

  130. Mizusaki, J., Mima, Y., Yamauchi, S. & Fueki, K. Nonstoichiometry of the perovskite-type oxides La1–xSrxCoO3–δ. J. Solid State Chem. 80, 102–111 (1989).

    CAS  Google Scholar 

  131. Norby, T. EMF method determination of conductivity contributions from protons and other foreign ions in oxides. Solid State Ionics 28–30, 1586–1591 (1988).

    Google Scholar 

  132. Kim, E., Yeon, J. I., Martin, M. & Yoo, H.-I. Experimental demonstration of the path- and time-dependence of open-circuit voltage of galvanic cells involving a multinary compound under multiple chemical potential gradients. Solid State Ionics 235, 22–31 (2013).

    CAS  Google Scholar 

  133. Yoo, H.-I. & Martin, M. On the path-dependence of the open-cell voltage of a galvanic cell involving a ternary or multinary compound with multiple mobile ionic species under multiple chemical potential gradients. Phys. Chem. Chem. Phys. 12, 14699–14705 (2010).

    CAS  Google Scholar 

  134. Pérez-Coll, D., Heras-Juaristi, G., Fagg, D. P. & Mather, G. C. Transport-number determination of a protonic ceramic electrolyte membrane via electrode-polarisation correction with the Gorelov method. J. Power Sources 245, 445–455 (2014).

    Google Scholar 

  135. Yoon, J.-Y., In Yeon, J. & Yoo, H.-I. Concentration-cell measurement of proton transference number of SrCe0.95Yb0.05O3–δ. Solid State Ionics 213, 22–28 (2012).

    CAS  Google Scholar 

  136. De Souza, R. A., Kilner, J. A. & Jeynes, C. The application of secondary ion mass spectrometry (SIMS) to the study of high temperature proton conductors (HTPC). Solid State Ionics 97, 409–419 (1997).

    Google Scholar 

  137. den Otter, M. W., Boukamp, B. A. & Bouwmeester, H. J. M. Theory of oxygen isotope exchange. Solid State Ionics 139, 89–94 (2001).

    Google Scholar 

  138. De Souza, R. A. & Martin, M. Probing diffusion kinetics with secondary ion mass spectrometry. MRS Bull. 34, 907–914 (2009).

    Google Scholar 

  139. Wang, L., Merkle, R., Maier, J., Acartürk, T. & Starke, U. Oxygen tracer diffusion in dense Ba0.5Sr0.5Co0.8Fe0.2O3−δ films. Appl. Phys. Lett. 94, 071908 (2009).

    Google Scholar 

  140. Kilner, J. A., Skinner, S. J. & Brongersma, H. H. The isotope exchange depth profiling (IEDP) technique using SIMS and LEIS. J. Solid State Electrochem. 15, 861–876 (2011).

    CAS  Google Scholar 

  141. Huang, Y.-L., Pellegrinelli, C. & Wachsman, E. D. Reaction kinetics of gas-solid exchange using gas phase isotopic oxygen exchange. ACS Catal. 6, 6025–6032 (2016).

    CAS  Google Scholar 

  142. Zohourian, R., Merkle, R. & Maier, J. Bulk defect chemistry of PCFC cathode materials: discussion of defect interactions. ECS Trans. 77, 133–138 (2017).

    CAS  Google Scholar 

  143. Kreuer, K. D., Dippel, T., Baikovb, Y. M. & Maier, J. Water solubility, proton and oxygen diffusion in acceptor doped BaCeO3: a single crystal analysis. Solid State Ionics 86–88, 613–620 (1996).

    Google Scholar 

  144. Kreuer, K. D. et al. Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications. Solid State Ionics 145, 295–306 (2001).

    CAS  Google Scholar 

  145. Løken, A., Kjølseth, C. & Haugsrud, R. Electrical conductivity and TG-DSC study of hydration of Sc-doped CaSnO3 and CaZrO3. Solid State Ionics 267, 61–67 (2014).

    Google Scholar 

  146. Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    CAS  Google Scholar 

  147. Kröger, F. A. & Vink, H. J. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys. 3, 307–435 (1956).

    Google Scholar 

  148. Tarasova, N. A., Filinkova, Y. V. & Animitsa, I. E. Hydration and forms of oxygen-hydrogen groups in oxyfluorides Ba2–0.5xIn2O5–xFx. Russ. J. Phys. Chem. A 86, 1208–1211 (2012).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Army Research Office under grant number W911NF-17-1-0051. Additional support was provided by the Advanced Research Projects Agency–Energy (ARPA-E) through the REFUEL (award DE-AR0000808) and REBELS programmes (award DEAR0000493). A.Z. was supported by the US Department of Energy (DOE), under contract no. DEAC36-08GO28308 with the Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory (NREL), with funding provided by the Office of Energy Efficiency and Renewable Energy (EERE), under Hydrogen and Fuel Cell Technologies Office (HFCO), as a part of HydroGEN Energy Materials Network (EMN) consortium. The views expressed in the article do not necessarily represent the views of the DOE or the US government.

Author information

Authors and Affiliations

Authors

Contributions

M.P. prepared the manuscript. V.S. provided content related to n-type TIEC materials and assisted with revisions. A.Z. assisted with revisions. R.O. assisted with the manuscript scope and development, contributed to revisions, and provided introductory content.

Corresponding author

Correspondence to Ryan O’Hayre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Papac, M., Stevanović, V., Zakutayev, A. et al. Triple ionic–electronic conducting oxides for next-generation electrochemical devices. Nat. Mater. 20, 301–313 (2021). https://doi.org/10.1038/s41563-020-00854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00854-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing