Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis


Subnanometric metal species (single atoms and clusters) have been demonstrated to be unique compared with their nanoparticulate counterparts. However, the poor stabilization of subnanometric metal species towards sintering at high temperature (>500 °C) under oxidative or reductive reaction conditions limits their catalytic application. Zeolites can serve as an ideal support to stabilize subnanometric metal catalysts, but it is challenging to localize subnanometric metal species on specific sites and modulate their reactivity. We have achieved a very high preference for localization of highly stable subnanometric Pt and PtSn clusters in the sinusoidal channels of purely siliceous MFI zeolite, as revealed by atomically resolved electron microscopy combining high-angle annular dark-field and integrated differential phase contrast imaging techniques. These catalysts show very high stability, selectivity and activity for the industrially important dehydrogenation of propane to form propylene. This stabilization strategy could be extended to other crystalline porous materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: One-pot synthesis of Pt-zeolite materials.
Fig. 2: Characterization of Pt-zeolite materials by X-ray absorption spectroscopy.
Fig. 3: Identification of the location of subnanometric Pt clusters within the MFI structure.
Fig. 4: Chemical analysis of the K-PtSn@MFI sample.
Fig. 5: Catalytic performance of Pt-zeolite materials for propane dehydrogenation reaction.

Data availability

All the data reported in this paper are available from the corresponding author on request.


  1. 1.

    Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  Google Scholar 

  2. 2.

    Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

    CAS  Google Scholar 

  3. 3.

    Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018).

    CAS  Google Scholar 

  4. 4.

    Ortalan, V., Uzun, A., Gates, B. C. & Browning, N. D. Direct imaging of single metal atoms and clusters in the pores of dealuminated HY zeolite. Nat. Nanotechnol. 5, 506–510 (2010).

    CAS  Google Scholar 

  5. 5.

    Li, C. et al. Selective introduction of acid sites in different confined positions in ZSM-5 and its catalytic implications. ACS Catal. 8, 7688–7697 (2018).

    CAS  Google Scholar 

  6. 6.

    Knott, B. C. et al. Consideration of the aluminum distribution in zeolites in theoretical and experimental catalysis research. ACS Catal. 8, 770–784 (2017).

    Google Scholar 

  7. 7.

    Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N. & Tatsumi, T. Control of the Al distribution in the framework of ZSM-5 zeolite and its evaluation by solid-state NMR technique and catalytic properties. J. Phys. Chem. C 119, 15303–15315 (2015).

    CAS  Google Scholar 

  8. 8.

    Goel, S., Zones, S. I. & Iglesia, E. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement. J. Am. Chem. Soc. 136, 15280–15290 (2014).

    CAS  Google Scholar 

  9. 9.

    Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    CAS  Google Scholar 

  10. 10.

    Iida, T., Zanchet, D., Ohara, K., Wakihara, T. & Roman-Leshkov, Y. Concerted bimetallic nanocluster synthesis and encapsulation via induced zeolite framework demetallation for shape and substrate selective heterogeneous catalysis. Angew. Chem. Int. Ed. 57, 6454–6458 (2018).

    CAS  Google Scholar 

  11. 11.

    Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    CAS  Google Scholar 

  12. 12.

    Campbell, C. T., Parker, S. C. & Starr, D. E. The effect of size-dependent nanoparticle energetics on catalyst sintering. Science 298, 811–814 (2002).

    CAS  Google Scholar 

  13. 13.

    Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    CAS  Google Scholar 

  14. 14.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  15. 15.

    Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    Google Scholar 

  16. 16.

    Xiong, H. et al. Thermally stable and regenerable platinum-tin clusters for propane dehydrogenation prepared by atom trapping on ceria. Angew. Chem. Int. Ed. 56, 8986–8991 (2017).

    CAS  Google Scholar 

  17. 17.

    Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    CAS  Google Scholar 

  18. 18.

    Zhu, J. et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 5, 6310–6319 (2015).

    CAS  Google Scholar 

  19. 19.

    Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    CAS  Google Scholar 

  20. 20.

    Yang, M. et al. Catalytically active Au-O(OH)x- species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    CAS  Google Scholar 

  21. 21.

    Zhai, Y. et al. Alkali-stabilized Pt-OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010).

    CAS  Google Scholar 

  22. 22.

    Lazic, I., Bosch, E. G. T. & Lazar, S. Phase contrast STEM for thin samples: integrated differential phase contrast. Ultramicroscopy 160, 265–280 (2016).

    CAS  Google Scholar 

  23. 23.

    Yucelen, E., Lazic, I. & Bosch, E. G. T. Phase contrast scanning transmission electron microscopy imaging of light and heavy atoms at the limit of contrast and resolution. Sci. Rep. 8, 2676 (2018).

    Google Scholar 

  24. 24.

    Van Koningsveld, H. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM‐5 with improved framework accuracy. Acta Crystallogr. B 43, 127–132 (1987).

    Google Scholar 

  25. 25.

    Dib, E., Grand, J., Mintova, S. & Fernandez, C. Structure-directing agent governs the location of silanol defects in zeolites. Chem. Mater. 27, 7577–7579 (2015).

    CAS  Google Scholar 

  26. 26.

    Denayer, J. F., De Meyer, K., Martens, J. A. & Baron, G. V. Molecular competition effects in liquid-phase adsorption of long-chain n-alkane mixtures in ZSM-5 zeolite pores. Angew. Chem. Int. Ed. 42, 2774–2777 (2003).

    CAS  Google Scholar 

  27. 27.

    Grand, J. et al. One-pot synthesis of silanol-free nanosized MFI zeolite. Nat. Mater. 16, 1010–1015 (2017).

    CAS  Google Scholar 

  28. 28.

    de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001).

    Google Scholar 

  29. 29.

    Bare, S. R. et al. Uniform catalytic site in Sn-beta-zeolite determined using X-ray absorption fine structure. J. Am. Chem. Soc. 127, 12924–12932 (2005).

    CAS  Google Scholar 

  30. 30.

    Hammond, C. et al. Identification of active and spectator Sn sites in Sn-beta following solid-state stannation, and consequences for Lewis acid catalysis. ChemCatChem 7, 3322–3331 (2015).

    CAS  Google Scholar 

  31. 31.

    Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).

    CAS  Google Scholar 

  32. 32.

    Huang, H. et al. Effects of heat treatment atmosphere on the structure and activity of Pt3Sn nanoparticle electrocatalysts: a characterization case study. Faraday Discuss. 208, 555–573 (2018).

    CAS  Google Scholar 

  33. 33.

    Alexeev, O. S. & Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 42, 1571–1587 (2003).

    CAS  Google Scholar 

  34. 34.

    Sankar, M. et al. Designing bimetallic catalysts for a green and sustainable future. Chem. Soc. Rev. 41, 8099–8139 (2012).

    CAS  Google Scholar 

  35. 35.

    Ferrando, R., Jellinek, J. & Johnston, R. L. Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108, 845–910 (2008).

    CAS  Google Scholar 

  36. 36.

    Zhu, H. et al. Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. J. Catal. 320, 52–62 (2014).

    CAS  Google Scholar 

  37. 37.

    Wu, J., Peng, Z. & Bell, A. T. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100-x/Mg(Al)O (70x100). J. Catal. 311, 161–168 (2014).

    CAS  Google Scholar 

  38. 38.

    López-Haro, M. et al. A macroscopically relevant 3D-metrology approach for nanocatalysis research. Part. Part. Syst. Charact. 35, 1700343 (2018).

    Google Scholar 

  39. 39.

    Kirkland, E. J. Advanced Computing in Electron Microscopy (Springer, 2010).

  40. 40.

    Bernal, S. et al. The interpretation of HREM images of supported metal catalysts using image simulation: profile view images. Ultramicroscopy 72, 135–164 (1998).

    CAS  Google Scholar 

  41. 41.

    Simonelli, L. et al. CLÆSS: the hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 3, 1231987 (2016).

    Google Scholar 

  42. 42.

    Guilera, G., Rey, F., Hernández-Fenollosa, J. & Cortés-Vergaz, J. J. One body, many heads; the Cerberus of catalysis. A new multipurpose in-situ cell for XAS at ALBA. J. Phys. Conf. Ser. 430, 012057 (2013).

    Google Scholar 

  43. 43.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  Google Scholar 

  44. 44.

    Yin, F., Ji, S., Wu, P., Zhao, F. & Li, C. Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane. J. Catal. 257, 108–116 (2008).

    CAS  Google Scholar 

  45. 45.

    Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    CAS  Google Scholar 

Download references


This work has been supported by the European Union through the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish government through the Severo Ochoa Programme (SEV-2016-0683). L.L. thanks ITQ for providing a contract. The authors also thank the Microscopy Service of UPV for the TEM and STEM measurements. The XAS measurements were carried out in CLAESS beamline at the ALBA synchrotron. HR STEM measurements were performed at DME-UCA in Cadiz University with financial support from FEDER/MINECO (MAT2017-87579-R and MAT2016-81118-P). A relevant patent application (European patent application No. 19382024.8) has been presented. C.W.L. thanks CAPES (Science without Frontiers-Process no. 13191/13-6) for a predoctoral fellowship.

Author information




A.C. conceived the project, directed the study and wrote the manuscript. L.L. carried out the synthesis, characterizations and catalytic measurements and collaborated in writing the manuscript. M.L.-H. and J.J.C. carried out the HR STEM measurements, image analysis and simulations. C.W.L. carried out the analysis of XAS data. L.L., C.L. and L.S. contributed to the collection of XAS data in the ALBA synchrotron. P.C. carried out the CO infrared adsorption experiments. All the authors discussed the results and contributed to the production of the manuscript.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Supplementary Figs. 1–71 and Supplementary refs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Lopez-Haro, M., Lopes, C.W. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing