Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Confining isolated atoms and clusters in crystalline porous materials for catalysis

Abstract

Structure–reactivity relationships for nanoparticle-based catalysts have been greatly influenced by the study of catalytic materials with either supported isolated metal atoms or metal clusters comprising a few atoms. The stability of these metal species is a key challenge because they can sinter into large nanoparticles under harsh reaction conditions. However, stability can be achieved by confining the nanoparticles in crystalline porous materials (such as zeolites and metal–organic frameworks). More importantly, the interaction between the metal species and the porous framework may modulate the geometric and electronic structures of the subnanometric metal species, especially for metal clusters. This confinement effect can induce shape-selective catalysis or different chemoselectivity from that of metal atoms supported on open-structure solid carriers. In this Review, we discuss the structural features, synthesis methodologies, characterization techniques and catalytic applications of subnanometric species confined in zeolites and metal–organic frameworks. We make a critical comparison between confined and non-confined isolated atoms and metal clusters, and provide future perspectives for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Isolated atoms and subnanometric metal clusters on different supports.
Fig. 2: Different methods for the introduction of metal catalysts into zeolite crystallites.
Fig. 3: Catalytic performance of Pt–zeolite materials for propane dehydrogenation.
Fig. 4: Influence of the density of Cu species in CHA zeolites on the activity for selective catalytic reduction of NOx.
Fig. 5: Photocatalysis and electrocatalysis using subnanometric metal species in MOFs.

Similar content being viewed by others

References

  1. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  Google Scholar 

  2. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  3. Flytzani-Stephanopoulos, M. & Gates, B. C. Atomically dispersed supported metal catalysts. Annu. Rev. Chem. Biomol. Eng. 3, 545–574 (2012).

    CAS  Google Scholar 

  4. Takei, T. et al. Heterogeneous catalysis by gold. Adv. Catal. 55, 1–126 (2012).

    CAS  Google Scholar 

  5. Xu, Z. et al. Size-dependent catalytic activity of supported metal clusters. Nature 372, 346–348 (1994).

    CAS  Google Scholar 

  6. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    CAS  Google Scholar 

  7. Boronat, M., Leyva-Perez, A. & Corma, A. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc. Chem. Res. 47, 834–844 (2014).

    CAS  Google Scholar 

  8. Liu, L. et al. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: which are the working catalytic sites? ACS Catal. 9, 10626–10639 (2019).

    CAS  Google Scholar 

  9. Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

    CAS  Google Scholar 

  10. Sachtler, W. M. H. Metal clusters in zeolites: an intriguing class of catalysts. Acc. Chem. Res. 26, 383–387 (1993).

    CAS  Google Scholar 

  11. Kosinov, N., Liu, C., Hensen, E. J. M. & Pidko, E. A. Engineering of transition metal catalysts confined in zeolites. Chem. Mater. 30, 3177–3198 (2018).

    CAS  Google Scholar 

  12. Rogge, S. M. J. et al. Metal–organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 46, 3134–3184 (2017).

    CAS  Google Scholar 

  13. Parkinson, G. S. Single-atom catalysis: how structure influences catalytic performance. Catal. Lett. 149, 1137–1146 (2019).

    CAS  Google Scholar 

  14. Fako, E., Łodziana, Z. & López, N. Comparative single atom heterogeneous catalysts (SAHCs) on different platforms: a theoretical approach. Catal. Sci. Technol. 7, 4285–4293 (2017).

    CAS  Google Scholar 

  15. Hu, P. et al. Electronic metal-support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014).

    CAS  Google Scholar 

  16. Coperet, C. et al. Surface organometallic and coordination chemistry toward single-site heterogeneous catalysts: strategies, methods, structures, and activities. Chem. Rev. 116, 323–421 (2016).

    CAS  Google Scholar 

  17. Pelletier, J. D. & Basset, J. M. Catalysis by design: well-defined single-site heterogeneous catalysts. Acc. Chem. Res. 49, 664–677 (2016).

    CAS  Google Scholar 

  18. Yin, P. et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. Engl. 55, 10800–10805 (2016).

    CAS  Google Scholar 

  19. Chen, Z. et al. Tunability and scalability of single-atom catalysts based on carbon nitride. ACS Sustain. Chem. Eng. 7, 5223–5230 (2019).

    CAS  Google Scholar 

  20. Hoffman, A. S. et al. Beating heterogeneity of single-site catalysts: MgO-supported iridium complexes. ACS Catal. 8, 3489–3498 (2018).

    CAS  Google Scholar 

  21. Benaglia, M. & Puglisi, A. Catalyst Immobilization: Methods and Applications (Wiley-VCH, 2020).

  22. Ozin, G. A. & Gil, C. Intrazeolite organometallics and coordination complexes: internal versus external confinement of metal guests. Chem. Rev. 89, 1749–1764 (1989).

    CAS  Google Scholar 

  23. Martini, A. et al. Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity. Chem. Sci. 8, 6836–6851 (2017).

    CAS  Google Scholar 

  24. Khivantsev, K. et al. Effect of Si/Al ratio and Rh precursor used on the synthesis of HY zeolite-supported rhodium carbonyl hydride complexes. J. Phys. Chem. C 119, 17166–17181 (2015).

    CAS  Google Scholar 

  25. Moreno-González, M., Millán, R., Concepción, P., Blasco, T. & Boronat, M. Spectroscopic evidence and density functional theory (DFT) analysis of low-temperature oxidation of Cu+ to Cu2+ NOx in Cu-CHA catalysts: implications for the SCR-NOx reaction mechanism. ACS Catal. 9, 2725–2738 (2019).

    Google Scholar 

  26. Borfecchia, E. et al. Cu-CHA - a model system for applied selective redox catalysis. Chem. Soc. Rev. 47, 8097–8133 (2018).

    CAS  Google Scholar 

  27. Ji, P., Feng, X., Veroneau, S. S., Song, Y. & Lin, W. Trivalent zirconium and hafnium metal–organic frameworks for catalytic 1,4-dearomative additions of pyridines and quinolines. J. Am. Chem. Soc. 139, 15600–15603 (2017).

    CAS  Google Scholar 

  28. Bernales, V., Ortuno, M. A., Truhlar, D. G., Cramer, C. J. & Gagliardi, L. Computational design of functionalized metal–organic framework nodes for catalysis. ACS Cent. Sci. 4, 5–19 (2018).

    CAS  Google Scholar 

  29. Liu, K. et al. Genesis of electron deficient Pt1(0) in PDMS-PEG aggregates. Nat. Commun. 10, 996 (2019).

    Google Scholar 

  30. Sun, G., Alexandrova, A. N. & Sautet, P. Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization. J. Chem. Phys. 151, 194703 (2019).

    Google Scholar 

  31. Tosoni, S. & Pacchioni, G. Oxide‐supported gold clusters and nanoparticles in catalysis: a computational chemistry perspective. ChemCatChem 11, 73–89 (2018).

    Google Scholar 

  32. Stakheev, A. Y. & Kustov, L. M. Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s. Appl. Catal. A Gen. 188, 3–35 (1999).

    CAS  Google Scholar 

  33. Vilhelmsen, L. B., Walton, K. S. & Sholl, D. S. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74. J. Am. Chem. Soc. 134, 12807–12816 (2012).

    CAS  Google Scholar 

  34. Tian, Z. et al. Theoretical evidence on the confinement effect of Pt@UiO-66-NH2 for cinnamaldehyde hydrogenation. J. Phys. Chem. C 123, 22114–22122 (2019).

    CAS  Google Scholar 

  35. Dou, L. et al. Structures and electronic properties of Au clusters encapsulated ZIF-8 and ZIF-90. J. Phys. Chem. C 122, 8901–8909 (2018).

    CAS  Google Scholar 

  36. Xiao, J., Pan, X., Zhang, F., Li, H. & Bao, X. Size-dependence of carbon nanotube confinement in catalysis. Chem. Sci. 8, 278–283 (2017).

    CAS  Google Scholar 

  37. Xiao, J., Pan, X., Guo, S., Ren, P. & Bao, X. Toward fundamentals of confined catalysis in carbon nanotubes. J. Am. Chem. Soc. 137, 477–482 (2015).

    CAS  Google Scholar 

  38. Hakkinen, H. Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37, 1847–1859 (2008).

    Google Scholar 

  39. Ferrari, A. M., Neyman, K. M., Belling, T., Mayer, M. & Rösch, N. Small platinum clusters in zeolites: a density functional study of CO adsorption on electronically modified models. J. Phys. Chem. B 103, 216–226 (1999).

    CAS  Google Scholar 

  40. Ferrari, A. M. et al. Faujasite-supported Ir4 clusters: a density functional model study of metal–zeolite interactions. J. Phys. Chem. B 103, 5311–5319 (1999).

    CAS  Google Scholar 

  41. Boronat, M. & Corma, A. What is measured when measuring acidity in zeolites with probe molecules? ACS Catal. 9, 1539–1548 (2019).

    CAS  Google Scholar 

  42. Gounder, R. & Iglesia, E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc. Chem. Res. 45, 229–238 (2012).

    CAS  Google Scholar 

  43. Eckstein, S. et al. Influence of hydronium ions in zeolites on sorption. Angew. Chem. Int. Ed. 58, 3450–3455 (2019).

    CAS  Google Scholar 

  44. Latimer, A. A. et al. Understanding trends in C–H bond activation in heterogeneous catalysis. Nat. Mater. 16, 225–229 (2017).

    CAS  Google Scholar 

  45. Wannakao, S., Maihom, T., Probst, M., Limtrakul, J. & Kongpatpanich, K. Porous materials as a platform for highly uniform single-atom catalysts: tuning the electronic structure for the low-temperature oxidation of carbon monoxide. J. Phys. Chem. C 120, 19686–19697 (2016).

    CAS  Google Scholar 

  46. Koningsberger, D. C., de Graaf, J., Mojet, B. L., Ramaker, D. E. & Miller, J. T. The metal–support interaction in Pt/Y zeolite: evidence for a shift in energy of metal d-valence orbitals by Pt–H shape resonance and atomic XAFS spectroscopy. Appl. Catal. A Gen. 191, 205–220 (2000).

    CAS  Google Scholar 

  47. Treesukol, P., Srisuk, K., Limtrakul, J. & Truong, T. N. Nature of the metal–support interaction in bifunctional catalytic Pt/H-ZSM-5 zeolite. J. Phys. Chem. B 109, 11940–11945 (2005).

    CAS  Google Scholar 

  48. Mikhailov, M. N., Kustov, L. M. & Kazansky, V. B. The state and reactivity of Pt6 particles in ZSM-5 zeolite. Catal. Lett. 120, 8–13 (2007).

    Google Scholar 

  49. Grybos, R., Benco, L., Bucko, T. & Hafner, J. Molecular adsorption and metal-support interaction for transition-metal clusters in zeolites: NO adsorption on Pdn (n = 1–6) clusters in mordenite. J. Chem. Phys. 130, 104503 (2009).

    Google Scholar 

  50. Mahyuddin, M. H., Staykov, A., Shiota, Y., Miyanishi, M. & Yoshizawa, K. Roles of zeolite confinement and Cu–O–Cu angle on the direct conversion of methane to methanol by [Cu2(μ-O)]2+-exchanged AEI, CHA, AFX, and MFI zeolites. ACS Catal. 7, 3741–3751 (2017).

    CAS  Google Scholar 

  51. Szécsényi, Á. et al. Breaking linear scaling relationships with secondary interactions in confined space: a case study of methane oxidation by Fe/ZSM-5 zeolite. ACS Catal. 9, 9276–9284 (2019).

    Google Scholar 

  52. Choi, M., Yook, S. & Kim, H. Hydrogen spillover in encapsulated metal catalysts: new opportunities for designing advanced hydroprocessing catalysts. ChemCatChem 7, 1048–1057 (2015).

    CAS  Google Scholar 

  53. Im, J., Shin, H., Jang, H., Kim, H. & Choi, M. Maximizing the catalytic function of hydrogen spillover in platinum-encapsulated aluminosilicates with controlled nanostructures. Nat. Commun. 5, 3370 (2014).

    Google Scholar 

  54. Goellner, J. F., Gates, B. C., Vayssilov, G. N. & Rösch, N. Structure and bonding of a site-isolated transition metal complex: Rhodium dicarbonyl in highly dealuminated zeolite Y. J. Am. Chem. Soc. 122, 8056–8066 (2000).

    CAS  Google Scholar 

  55. de Graaf, J., van Dillen, A. J., de Jong, K. P. & Koningsberger, D. C. Preparation of highly dispersed Pt particles in zeolite Y with a narrow particle size distribution: Characterization by hydrogen chemisorption, TEM, EXAFS spectroscopy, and particle modeling. J. Catal. 203, 307–321 (2001).

    Google Scholar 

  56. Schreier, M., Teren, S., Belcher, L., Regalbuto, J. R. & Miller, J. T. The nature of ‘overexchanged’ copper and platinum on zeolites. Nanotechnology 16, S582–S591 (2005).

    Google Scholar 

  57. Serna, P. & Gates, B. C. Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc. Chem. Res. 47, 2612–2620 (2014).

    CAS  Google Scholar 

  58. Zecevic, J., van der Eerden, A. M., Friedrich, H., de Jongh, P. E. & de Jong, K. P. Heterogeneities of the nanostructure of platinum/zeolite Y catalysts revealed by electron tomography. ACS Nano 7, 3698–3705 (2013).

    CAS  Google Scholar 

  59. Balkus K. J. & Gabrielov A. G. in Inclusion Chemistry with Zeolites: Nanoscale Materials by Design. Topics in Inclusion Science Vol. 6 (eds Herron N. & Corbin D. R.) 159–184 (Springer, 1995).

  60. Kawi, S. & Gates, B. C. in Clusters and Colloids. From Theory to Applications (ed. Schmid G.) 299–372 (Wiley, 1994).

  61. Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004).

    Google Scholar 

  62. Kuehl, G. H. Shape selective catalyst from zeolite alpha and use thereof. US patent 4,299,686 (1981).

  63. Choi, M., Wu, Z. & Iglesia, E. Mercaptosilane-assisted synthesis of metal clusters within zeolites and catalytic consequences of encapsulation. J. Am. Chem. Soc. 132, 9129–9137 (2010).

    CAS  Google Scholar 

  64. Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).

    CAS  Google Scholar 

  65. Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    CAS  Google Scholar 

  66. Moliner, M. et al. Reversible transformation of Pt nanoparticles into single atoms inside high-silica chabazite zeolite. J. Am. Chem. Soc. 138, 15743–15750 (2016).

    CAS  Google Scholar 

  67. Liu, Y. et al. A general strategy for fabricating isolated single metal atomic site catalysts in Y zeolite. J. Am. Chem. Soc. 141, 9305–9311 (2019).

    Google Scholar 

  68. Sun, Q. et al. Zeolite-encaged single-atom rhodium catalysts: highly-efficient hydrogen generation and shape-selective tandem hydrogenation of nitroarenes. Angew. Chem. Int. Ed. 58, 18570–18576 (2019).

    CAS  Google Scholar 

  69. Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    CAS  Google Scholar 

  70. Zhang, Y., Kubů, M., Mazur, M. & Čejka, J. Encapsulation of Pt nanoparticles into IPC-2 and IPC-4 zeolites using the ADOR approach. Microporous Mesoporous Mater. 279, 364–370 (2019).

    CAS  Google Scholar 

  71. Moliner, M., Gabay, J., Kliewer, C., Serna, P. & Corma, A. Trapping of metal atoms and metal clusters by chabazite under severe redox stress. ACS Catal. 8, 9520–9528 (2018).

    CAS  Google Scholar 

  72. Liu, L. et al. Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat. Commun. 9, 574 (2018).

    Google Scholar 

  73. Liu, L. et al. Regioselective generation and reactivity control of subnanometric platinum clusters in zeolites for high-temperature catalysis. Nat. Mater. 18, 866–873 (2019).

    CAS  Google Scholar 

  74. Zhang, X. et al. Catalytic chemoselective functionalization of methane in a metal–organic framework. Nat. Catal. 1, 356–362 (2018).

    CAS  Google Scholar 

  75. Brozek, C. K. & Dinca, M. Ti3+-, V2+/3+-, Cr2+/3+-, Mn2+-, and Fe2+-substituted MOF-5 and redox reactivity in Cr- and Fe-MOF-5. J. Am. Chem. Soc. 135, 12886–12891 (2013).

    CAS  Google Scholar 

  76. Shultz, A. M., Sarjeant, A. A., Farha, O. K., Hupp, J. T. & Nguyen, S. T. Post-synthesis modification of a metal–organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 133, 13252–13255 (2011).

    CAS  Google Scholar 

  77. Yang, D. & Gates, B. C. Catalysis by metal organic frameworks: perspective and suggestions for future research. ACS Catal. 9, 1779–1798 (2019).

    CAS  Google Scholar 

  78. Kim, I. S. et al. Sinter-resistant platinum catalyst supported by metal–organic framework. Angew. Chem. Int. Ed. Engl. 57, 909–913 (2018).

    CAS  Google Scholar 

  79. Luo, Y. et al. Fabrication of Au25(SG)18-ZIF-8 nanocomposites: a facile strategy to position Au25(SG)18 nanoclusters inside and outside ZIF-8. Adv. Mater. 30, 1704576 (2018).

    Google Scholar 

  80. Kratzl, K. et al. Generation and stabilization of small platinum clusters Pt12±x inside a metal–organic framework. J. Am. Chem. Soc. 141, 13962–13969 (2019).

    CAS  Google Scholar 

  81. Fortea-Perez, F. R. et al. The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat. Mater. 16, 760–766 (2017).

    CAS  Google Scholar 

  82. Mon, M. et al. Synthesis of densely packaged, ultrasmall Pt20 clusters within a thioether-functionalized MOF: catalytic activity in industrial reactions at low temperature. Angew. Chem. Int. Ed. Engl. 57, 6186–6191 (2018).

    CAS  Google Scholar 

  83. Sá, J. et al. Redispersion of gold supported on oxides. ACS Catal. 2, 552–560 (2012).

    Google Scholar 

  84. Varela, M. et al. Materials characterization in the aberration-corrected scanning transmission electron microscope. Annu. Rev. Mater. Res. 35, 539–569 (2005).

    CAS  Google Scholar 

  85. Zhou, W., Wachs, I. E. & Kiely, C. J. Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy. Curr. Opin. Solid State Mater. Sci. 16, 10–22 (2012).

    CAS  Google Scholar 

  86. Gates, B. C. Atomically dispersed supported metal catalysts: seeing is believing. Trends Chem. 1, 99–110 (2019).

    CAS  Google Scholar 

  87. Lu, J., Aydin, C., Browning, N. D. & Gates, B. C. Imaging isolated gold atom catalytic sites in zeolite NaY. Angew. Chem. Int. Ed. 51, 5842–5846 (2012).

    CAS  Google Scholar 

  88. Liu, L. et al. Direct imaging of atomically dispersed molybdenum that enables location of aluminum in the framework of zeolite ZSM-5. Angew. Chem. Int. Ed. 59, 819–825 (2020).

    CAS  Google Scholar 

  89. Fang, X. et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 30, 1705112 (2018).

    Google Scholar 

  90. Rivero-Crespo, M. A. et al. Confined Pt11+ water clusters in a MOF catalyze the low-temperature water–gas shift reaction with both CO2 oxygen atoms coming from water. Angew. Chem. Int. Ed. 57, 17094–17099 (2018).

    CAS  Google Scholar 

  91. Li, Y. et al. Cryo-EM structures of atomic surfaces and host-guest chemistry in metal-organic frameworks. Matter 1, 428–438 (2019).

    Google Scholar 

  92. Henninen, T. R., Bon, M., Wang, F., Passerone, D. & Erni, R. The structure of sub-nm platinum clusters at elevated temperatures. Angew. Chem. Int. Ed. 59, 839–845 (2020).

    CAS  Google Scholar 

  93. Miao, J., Ercius, P. & Billinge, S. J. Atomic electron tomography: 3D structures without crystals. Science 353, aaf2157 (2016).

    Google Scholar 

  94. Wang, X. N. et al. Crystallographic visualization of post-synthetic nickel clusters into metal–organic framework. J. Am. Chem. Soc. 141, 13654–13663 (2019).

    CAS  Google Scholar 

  95. Lovejoy, T. C. et al. Single atom identification by energy dispersive X-ray spectroscopy. Appl. Phys. Lett. 100, 154101 (2012).

    Google Scholar 

  96. Chung, H. T. et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science 357, 479–484 (2017).

    CAS  Google Scholar 

  97. Tizei, L. H. G. et al. Single atom spectroscopy: decreased scattering delocalization at high energy losses, effects of atomic movement and X-ray fluorescence yield. Ultramicroscopy 160, 239–246 (2016).

    CAS  Google Scholar 

  98. Seidman, D. N. Three-dimensional atom-probe tomography: advances and applications. Annu. Rev. Mater. Res. 37, 127–158 (2007).

    CAS  Google Scholar 

  99. Barroo, C., Akey, A. J. & Bell, D. C. Atom probe tomography for catalysis applications: a review. Appl. Sci. 9, 2721 (2019).

    CAS  Google Scholar 

  100. Perea, D. E. et al. Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nat. Commun. 6, 7589 (2015).

    Google Scholar 

  101. Schmidt, J. E., Oord, R., Guo, W., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale tomography reveals the deactivation of automotive copper-exchanged zeolite catalysts. Nat. Commun. 8, 1666 (2017).

    Google Scholar 

  102. Jiang, K. et al. Transition-metal singly atoms in a graphene shell as active centers for highly efficient artificial photosynthesis. Chem 3, 950–960 (2017).

    CAS  Google Scholar 

  103. Schmidt, J. E., Peng, L., Poplawsky, J. D. & Weckhuysen, B. M. Nanoscale chemical imaging of zeolites using atom probe tomography. Angew. Chem. Int. Ed. 57, 10422–10435 (2018).

    CAS  Google Scholar 

  104. Timoshenko, J., Duan, Z., Henkelman, G., Crooks, R. M. & Frenkel, A. I. Solving the structure and dynamics of metal nanoparticles by combining X-ray absorption fine structure spectroscopy and atomistic structure simulations. Annu. Rev. Anal. Chem. 12, 501–522 (2019).

    CAS  Google Scholar 

  105. Kulkarni, A., Chi, M., Ortalan, V., Browning, N. D. & Gates, B. C. Atomic resolution of the structure of a metal-support interface: triosmium clusters on MgO(110). Angew. Chem. Int. Ed. 49, 10089–10092 (2010).

    CAS  Google Scholar 

  106. Marberger, A. et al. Time-resolved copper speciation during selective catalytic reduction of NO on Cu-SSZ-13. Nat. Catal. 1, 221–227 (2018).

    CAS  Google Scholar 

  107. Yuan, N. et al. Probing the evolution of palladium species in Pd@MOF catalysts during the heck coupling reaction: an operando X-ray absorption spectroscopy study. J. Am. Chem. Soc. 140, 8206–8217 (2018).

    CAS  Google Scholar 

  108. Timoshenko, J. & Frenkel, A. I. “Inverting” X-ray absorption spectra of catalysts by machine learning in search for activity descriptors. ACS Catal. 9, 10192–10211 (2019).

    CAS  Google Scholar 

  109. Timoshenko, J. et al. Subnanometer substructures in nanoassemblies formed from clusters under a reactive atmosphere revealed using machine learning. J. Phys. Chem. C 122, 21686–21693 (2018).

    CAS  Google Scholar 

  110. Timoshenko, J. et al. Probing atomic distributions in mono- and bimetallic nanoparticles by supervised machine learning. Nano Lett. 19, 520–529 (2019).

    CAS  Google Scholar 

  111. Göltl, F. et al. UV–Vis and photoluminescence spectroscopy to understand the coordination of Cu cations in the zeolite SSZ-13. Chem. Mater. 31, 9582–9592 (2019).

    Google Scholar 

  112. Fenwick, O. et al. Tuning the energetics and tailoring the optical properties of silver clusters confined in zeolites. Nat. Mater. 15, 1017–1022 (2016).

    CAS  Google Scholar 

  113. Shimizu, K.-i et al. Formation and redispersion of silver clusters in Ag-MFI zeolite as investigated by time-resolved QXAFS and UV–Vis. J. Phys. Chem. C 111, 1683–1688 (2007).

    CAS  Google Scholar 

  114. Thang, H. V., Pacchioni, G., DeRita, L. & Christopher, P. Nature of stable single atom Pt catalysts dispersed on anatase TiO2. J. Catal. 367, 104–114 (2018).

    CAS  Google Scholar 

  115. Stakheev, A. Y., Shpiro, E. S., Jaeger, N. I. & Schulz-Ekloff, G. Electronic state and location of Pt metal clusters in KL zeolite: FTIR study of CO chemisorption. Catal. Lett. 32, 147–158 (1995).

    CAS  Google Scholar 

  116. Hoffman, A. S., Fang, C. Y. & Gates, B. C. Homogeneity of surface sites in supported single-site metal catalysts: assessment with band widths of metal carbonyl infrared spectra. J. Phys. Chem. Lett. 7, 3854–3860 (2016).

    CAS  Google Scholar 

  117. Lucier, B. E. G., Chen, S. & Huang, Y. Characterization of metal–organic frameworks: unlocking the potential of solid-state NMR. Acc. Chem. Res. 51, 319–330 (2018).

    CAS  Google Scholar 

  118. Lewis, J. D. et al. Distinguishing active site identity in Sn-beta zeolites using 31P MAS NMR of adsorbed trimethylphosphine oxide. ACS Catal. 8, 3076–3086 (2018).

    CAS  Google Scholar 

  119. Brunner, E. & Rauche, M. Solid-state NMR spectroscopy: an advancing tool to analyse the structure and properties of metal–organic frameworks. Chem. Sci. 11, 4297–4304 (2020).

    CAS  Google Scholar 

  120. Sun, Q. et al. Subnanometer bimetallic platinum–zinc clusters in zeolites for propane dehydrogenation. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202003349 (2020).

    Article  Google Scholar 

  121. Juneau, M. et al. Characterization of metal-zeolite composite catalysts: determining the environment of the active phase. ChemCatChem 12, 1826–1852 (2020).

    CAS  Google Scholar 

  122. Nemeth, L. & Bare, S. R. Science and technology of framework metal-containing zeotype catalysts. Adv. Catal. 57, 1–97 (2014).

    CAS  Google Scholar 

  123. Pal, D. B., Chand, R., Upadhyay, S. N. & Mishra, P. K. Performance of water gas shift reaction catalysts: a review. Renew. Sustain. Energy Rev. 93, 549–565 (2018).

    CAS  Google Scholar 

  124. Yang, M. et al. Catalytically active Au-O(OH)x-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    CAS  Google Scholar 

  125. Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    CAS  Google Scholar 

  126. Carter, J. H. et al. Activation and deactivation of gold/ceria–zirconia in the low-temperature water–gas shift reaction. Angew. Chem. Int. Ed. Engl. 56, 16037–16041 (2017).

    CAS  Google Scholar 

  127. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    CAS  Google Scholar 

  128. Huang, K., Miller, J. B., Huber, G. W., Dumesic, J. A. & Maravelias, C. T. A general framework for the evaluation of direct nonoxidative methane conversion strategies. Joule 2, 349–365 (2018).

    CAS  Google Scholar 

  129. Wang, L. et al. Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catal. Lett. 21, 35–41 (1993).

    CAS  Google Scholar 

  130. Ding, W., Li, S., Meitzner, G. D. & Iglesia, E. Methane conversion to aromatics on Mo/H-ZSM5: structure of molybdenum species in working catalysts. J. Phys. Chem. B 105, 506–513 (2001).

    CAS  Google Scholar 

  131. Kumar, A., Song, K., Liu, L., Han, Y. & Bhan, A. Absorptive hydrogen scavenging for enhanced aromatics yield during non-oxidative methane dehydroaromatization on Mo/H-ZSM-5 catalysts. Angew. Chem. Int. Ed. Engl. 57, 15577–15582 (2018).

    CAS  Google Scholar 

  132. Li, G., Vollmer, I., Liu, C., Gascon, J. & Pidko, E. A. Structure and reactivity of the Mo/ZSM-5 dehydroaromatization catalyst: an operando computational study. ACS Catal. 9, 8731–8737 (2019).

    CAS  Google Scholar 

  133. Ismagilov, Z. R., Matus, E. V. & Tsikoza, L. T. Direct conversion of methane on Mo/ZSM-5 catalysts to produce benzene and hydrogen: achievements and perspectives. Energy Environ. Sci. 1, 526–541 (2008).

    CAS  Google Scholar 

  134. Spivey, J. J. & Hutchings, G. Catalytic aromatization of methane. Chem. Soc. Rev. 43, 792–803 (2014).

    CAS  Google Scholar 

  135. Morejudo, S. H. et al. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science 353, 563–566 (2016).

    CAS  Google Scholar 

  136. Hou, Y., Ogasawara, S., Fukuoka, A. & Kobayashi, H. Zeolite-supported rhodium sub-nano cluster catalyst for low-temperature selective oxidation of methane to syngas. Catal. Sci. Technol. 7, 6132–6139 (2017).

    CAS  Google Scholar 

  137. Ravi, M. et al. Misconceptions and challenges in methane-to-methanol over transition-metal-exchanged zeolites. Nat. Catal. 2, 485–494 (2019).

    CAS  Google Scholar 

  138. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol — A critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    CAS  Google Scholar 

  139. Sushkevich, V. L., Palagin, D., Ranocchiari, M. & van Bokhoven, J. A. Selective anaerobic oxidation of methane enables direct synthesis of methanol. Science 356, 523–527 (2017).

    CAS  Google Scholar 

  140. Narsimhan, K., Iyoki, K., Dinh, K. & Roman-Leshkov, Y. Catalytic oxidation of methane into methanol over copper-exchanged zeolites with oxygen at low temperature. ACS Cent. Sci. 2, 424–429 (2016).

    CAS  Google Scholar 

  141. Dinh, K. T. et al. Continuous partial oxidation of methane to methanol catalyzed by diffusion-paired copper dimers in copper-exchanged zeolites. J. Am. Chem. Soc. 141, 11641–11650 (2019).

    CAS  Google Scholar 

  142. Ikuno, T. et al. Methane oxidation to methanol catalyzed by Cu-Oxo clusters stabilized in NU-1000 metal–organic framework. J. Am. Chem. Soc. 139, 10294–10301 (2017).

    CAS  Google Scholar 

  143. Zheng, J. et al. Selective methane oxidation to methanol on Cu-Oxo dimers stabilized by zirconia nodes of an NU-1000 metal–organic framework. J. Am. Chem. Soc. 141, 9292–9304 (2019).

    Google Scholar 

  144. Grundner, S. et al. Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nat. Commun. 6, 7546 (2015).

    Google Scholar 

  145. Bozbag, S. E. et al. Direct stepwise oxidation of methane to methanol over Cu–SiO2. ACS Catal. 8, 5721–5731 (2018).

    CAS  Google Scholar 

  146. Meyet, J. et al. Monomeric copper(II) sites supported on alumina selectively convert methane to methanol. Angew. Chem. Int. Ed. 58, 9841–9845 (2019).

    CAS  Google Scholar 

  147. Ross, M. O. et al. Particulate methane monooxygenase contains only mononuclear copper centers. Science 364, 566–570 (2019).

    CAS  Google Scholar 

  148. Shan, J., Li, M., Allard, L. F., Lee, S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    CAS  Google Scholar 

  149. Tang, Y. et al. Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions. Nat. Commun. 9, 1231 (2018).

    Google Scholar 

  150. Bruijnincx, P. C. & Weckhuysen, B. M. Shale gas revolution: an opportunity for the production of biobased chemicals? Angew. Chem. Int. Ed. 52, 11980–11987 (2013).

    CAS  Google Scholar 

  151. Stangland, E. E. Shale gas implications for C2-C3 olefin production: incumbent and future technology. Annu. Rev. Chem. Biomol. Eng. 9, 341–364 (2018).

    CAS  Google Scholar 

  152. Li, Z. et al. Metal–organic framework supported cobalt catalysts for the oxidative dehydrogenation of propane at low temperature. ACS Cent. Sci. 3, 31–38 (2017).

    CAS  Google Scholar 

  153. Fukunaga, T. & Katsuno, H. Halogen-promoted Pt/KL zeolite catalyst for the production of aromatic hydrocarbons from light naphtha. Catal. Surv. Asia 14, 96–102 (2010).

    CAS  Google Scholar 

  154. Meriaudeau, P. & Naccache, C. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route. Catal. Rev. 39, 5–48 (1997).

    CAS  Google Scholar 

  155. Xu, D. et al. Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. J. Catal. 365, 163–173 (2018).

    CAS  Google Scholar 

  156. Yang, D. et al. Tuning Zr6 metal–organic framework (MOF) nodes as catalyst supports: site densities and electron-donor properties influence molecular iridium complexes as ethylene conversion catalysts. ACS Catal. 6, 235–247 (2015).

    Google Scholar 

  157. Liu, J. et al. Introducing nonstructural ligands to zirconia-like metal–organic framework nodes to tune the activity of node-supported nickel catalysts for ethylene hydrogenation. ACS Catal. 9, 3198–3207 (2019).

    CAS  Google Scholar 

  158. Song, Y. et al. Metal–organic framework nodes support single-site nickel(II) hydride catalysts for the hydrogenolysis of aryl ethers. ACS Catal. 9, 1578–1583 (2019).

    CAS  Google Scholar 

  159. He, J., Zhao, C. & Lercher, J. A. Ni-catalyzed cleavage of aryl ethers in the aqueous phase. J. Am. Chem. Soc. 134, 20768–20775 (2012).

    CAS  Google Scholar 

  160. Ji, P. et al. Single-site cobalt catalysts at new Zr123-O)83-OH)82-OH)6 metal–organic framework nodes for highly active hydrogenation of nitroarenes, nitriles, and isocyanides. J. Am. Chem. Soc. 139, 7004–7011 (2017).

    CAS  Google Scholar 

  161. Liu, W. et al. Single-atom dispersed Co–N–C catalyst: structure identification and performance for hydrogenative coupling of nitroarenes. Chem. Sci. 7, 5758–5764 (2016).

    CAS  Google Scholar 

  162. Westerhaus, F. A. et al. Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nat. Chem. 5, 537–543 (2013).

    CAS  Google Scholar 

  163. Liu, L., Gao, F., Concepción, P. & Corma, A. A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. J. Catal. 350, 218–225 (2017).

    CAS  Google Scholar 

  164. Liu, L., Concepción, P. & Corma, A. Non-noble metal catalysts for hydrogenation: a facile method for preparing Co nanoparticles covered with thin layered carbon. J. Catal. 340, 1–9 (2016).

    CAS  Google Scholar 

  165. Ji, S. et al. Atomically dispersed ruthenium species inside metal–organic frameworks: combining the high activity of atomic sites and the molecular sieving effect of MOFs. Angew. Chem. Int. Ed. Engl. 58, 4271–4275 (2019).

    CAS  Google Scholar 

  166. An, B. et al. Cooperative copper centres in a metal–organic framework for selective conversion of CO2 to ethanol. Nat. Catal. 2, 709–717 (2019).

    CAS  Google Scholar 

  167. Cheng, K. et al. Impact of the spatial organization of bifunctional metal–zeolite catalysts on the hydroisomerization of light alkanes. Angew. Chem. Int. Ed. 59, 3592–3600 (2020).

    CAS  Google Scholar 

  168. Hayashi, T., Tanaka, K. & Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 178, 566–575 (1998).

    CAS  Google Scholar 

  169. Huang, J., Takei, T., Akita, T., Ohashi, H. & Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B Environ. 95, 430–438 (2010).

    CAS  Google Scholar 

  170. Taylor, B., Lauterbach, J. & Delgass, W. N. Gas-phase epoxidation of propylene over small gold ensembles on TS-1. Appl. Catal. A 291, 188–198 (2005).

    CAS  Google Scholar 

  171. Wells, D. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: a DFT study. J. Catal. 225, 69–77 (2004).

    CAS  Google Scholar 

  172. Liu, L., Arenal, R., Meira, D. M. & Corma, A. Generation of gold nanoclusters encapsulated in an MCM-22 zeolite for the aerobic oxidation of cyclohexane. Chem. Commun. 55, 1607–1610 (2019).

    CAS  Google Scholar 

  173. Bal, R., Tada, M., Sasaki, T. & Iwasawa, Y. Direct phenol synthesis by selective oxidation of benzene with molecular oxygen on an interstitial-N/Re cluster/zeolite catalyst. Angew. Chem. Int. Ed. Engl. 45, 448–452 (2006).

    CAS  Google Scholar 

  174. Tada, M. et al. Novel Re-cluster/HZSM-5 catalyst for highly selective phenol synthesis from benzene and O2:  performance and reaction mechanism. J. Phys. Chem. C 111, 10095–10104 (2007).

    CAS  Google Scholar 

  175. Beale, A. M., Gao, F., Lezcano-Gonzalez, I., Peden, C. H. & Szanyi, J. Recent advances in automotive catalysis for NOx emission control by small-pore microporous materials. Chem. Soc. Rev. 44, 7371–7405 (2015).

    CAS  Google Scholar 

  176. Kwak, J. H. et al. Size-dependent catalytic performance of CuO on γ-Al2O3: NO reduction versus NH3 oxidation. ACS Catal. 2, 1432–1440 (2012).

    CAS  Google Scholar 

  177. Vennestrøm, P. N. R. et al. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3. ACS Catal. 3, 2158–2161 (2013).

    Google Scholar 

  178. Paolucci, C. et al. Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357, 898–903 (2017).

    CAS  Google Scholar 

  179. Liu, A. et al. Controlling dynamic structural transformation of atomically dispersed CuOx species and influence on their catalytic performances. ACS Catal. 9, 9840–9851 (2019).

    CAS  Google Scholar 

  180. Martínez-Franco, R., Moliner, M. & Corma, A. Direct synthesis design of Cu-SAPO-18, a very efficient catalyst for the SCR of NOx. J. Catal. 319, 36–43 (2014).

    Google Scholar 

  181. Khivantsev, K. et al. Achieving atomic dispersion of highly loaded transition metals in small-pore zeolite SSZ-13: high-capacity and high-efficiency low-temperature CO and passive NOx adsorbers. Angew. Chem. Int. Ed. 57, 16672–16677 (2018).

    CAS  Google Scholar 

  182. Moliner, M. & Corma, A. From metal-supported oxides to well-defined metal site zeolites: the next generation of passive NOx adsorbers for low-temperature control of emissions from diesel engines. React. Chem. Eng. 4, 223–234 (2019).

    CAS  Google Scholar 

  183. Di Iorio, J. R. et al. The dynamic nature of Brønsted acid sites in Cu–zeolites during NOx selective catalytic reduction: quantification by gas-phase ammonia titration. Top. Catal. 58, 424–434 (2015).

    Google Scholar 

  184. Ye, X. et al. Deactivation of Cu-exchanged automotive-emission NH3-SCR catalysts elucidated with nanoscale resolution using scanning transmission X-ray microscopy. Angew. Chem. Int. Ed. 132, 15740–15747 (2020).

    Google Scholar 

  185. Artioli, N., Lobo, R. F. & Iglesia, E. Catalysis by confinement: enthalpic stabilization of NO oxidation transition states by micropororous and mesoporous siliceous materials. J. Phys. Chem. C 117, 20666–20674 (2013).

    CAS  Google Scholar 

  186. Fernández, E. et al. Low-temperature catalytic NO reduction with CO by subnanometric Pt clusters. ACS Catal. 9, 11530–11541 (2019).

    Google Scholar 

  187. Levasseur, B., Petit, C. & Bandosz, T. J. Reactive adsorption of NO2 on copper-based metal–organic framework and graphite oxide/metal–organic framework composites. ACS Appl. Mater. Interfaces 2, 3606–3613 (2010).

    CAS  Google Scholar 

  188. Han, X., Yang, S. & Schröder, M. Porous metal–organic frameworks as emerging sorbents for clean air. Nat. Rev. Chem. 3, 108–118 (2019).

    CAS  Google Scholar 

  189. Ghashghaee, M. Heterogeneous catalysts for gas-phase conversion of ethylene to higher olefins. Rev. Chem. Eng. 34, 595–655 (2018).

    CAS  Google Scholar 

  190. Martínez, A., Arribas, M. A., Concepción, P. & Moussa, S. New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Appl. Catal. A Gen. 467, 509–518 (2013).

    Google Scholar 

  191. Moussa, S., Concepción, P., Arribas, M. A. & Martínez, A. Nature of active nickel sites and initiation mechanism for ethylene oligomerization on heterogeneous Ni-beta catalysts. ACS Catal. 8, 3903–3912 (2018).

    CAS  Google Scholar 

  192. Metzger, E. D., Brozek, C. K., Comito, R. J. & Dinca, M. Selective dimerization of ethylene to 1-butene with a porous catalyst. ACS Cent. Sci. 2, 148–153 (2016).

    CAS  Google Scholar 

  193. Metzger, E. D., Comito, R. J., Hendon, C. H. & Dinca, M. Mechanism of single-site molecule-like catalytic ethylene dimerization in Ni-MFU-4l. J. Am. Chem. Soc. 139, 757–762 (2017).

    CAS  Google Scholar 

  194. Rozhko, E., Bavykina, A., Osadchii, D., Makkee, M. & Gascon, J. Covalent organic frameworks as supports for a molecular Ni based ethylene oligomerization catalyst for the synthesis of long chain olefins. J. Catal. 345, 270–280 (2017).

    CAS  Google Scholar 

  195. Díaz, U. & Corma, A. Ordered covalent organic frameworks, COFs and PAFs. From preparation to application. Coord. Chem. Rev. 311, 85–124 (2016).

    Google Scholar 

  196. Hulea, V. Toward platform chemicals from bio-based ethylene: heterogeneous catalysts and processes. ACS Catal. 8, 3263–3279 (2018).

    CAS  Google Scholar 

  197. Adam, R. et al. Self-assembly of catalytically active supramolecular coordination compounds within metal–organic frameworks. J. Am. Chem. Soc. 141, 10350–10360 (2019).

    CAS  Google Scholar 

  198. Thomas, J. M. & Raja, R. Exploiting nanospace for asymmetric catalysis: confinement of immobilized, single-site chiral catalysts enhances enantioselectivity. Acc. Chem. Res. 41, 708–720 (2008).

    CAS  Google Scholar 

  199. Chen, Z., Guan, Z., Li, M., Yang, Q. & Li, C. Enhancement of the performance of a platinum nanocatalyst confined within carbon nanotubes for asymmetric hydrogenation. Angew. Chem. Int. Ed. 50, 4913–4917 (2011).

    CAS  Google Scholar 

  200. Ma, L., Falkowski, J. M., Abney, C. & Lin, W. A series of isoreticular chiral metal–organic frameworks as a tunable platform for asymmetric catalysis. Nat. Chem. 2, 838–846 (2010).

    CAS  Google Scholar 

  201. Xia, Q. et al. Multivariate metal–organic frameworks as multifunctional heterogeneous asymmetric catalysts for sequential reactions. J. Am. Chem. Soc. 139, 8259–8266 (2017).

    CAS  Google Scholar 

  202. Garcia-Garcia, P., Moreno, J. M., Diaz, U., Bruix, M. & Corma, A. Organic–inorganic supramolecular solid catalyst boosts organic reactions in water. Nat. Commun. 7, 10835 (2016).

    Google Scholar 

  203. Zhang, X., Llabrés i Xamena, F. X. & Corma, A. Gold(III)–metal organic framework bridges the gap between homogeneous and heterogeneous gold catalysts. J. Catal. 265, 155–160 (2009).

    CAS  Google Scholar 

  204. Lee, J. S. et al. Architectural stabilization of a gold(III) catalyst in metal-organic frameworks. Chem 6, 142–152 (2020).

    CAS  Google Scholar 

  205. Schejn, A. et al. Cu2+-doped zeolitic imidazolate frameworks (ZIF-8): efficient and stable catalysts for cycloadditions and condensation reactions. Catal. Sci. Technol. 5, 1829–1839 (2015).

    CAS  Google Scholar 

  206. Zhang, T. & Lin, W. Metal–organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014).

    CAS  Google Scholar 

  207. Liang, Z., Qu, C., Xia, D., Zou, R. & Xu, Q. Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion. Angew. Chem. Int. Ed. Engl. 57, 9604–9633 (2018).

    CAS  Google Scholar 

  208. Sastre, F., Fornes, V., Corma, A. & Garcia, H. Selective, room-temperature transformation of methane to C1 oxygenates by deep UV photolysis over zeolites. J. Am. Chem. Soc. 133, 17257–17261 (2011).

    CAS  Google Scholar 

  209. Li, L. et al. Efficient sunlight-driven dehydrogenative coupling of methane to ethane over a Zn+-modified zeolite. Angew. Chem. Int. Ed. Engl. 50, 8299–8303 (2011).

    CAS  Google Scholar 

  210. Zuo, Q. et al. Ultrathin metal–organic framework nanosheets with ultrahigh loading of single Pt atoms for efficient visible-light-driven photocatalytic H2 evolution. Angew. Chem. Int. Ed. 58, 10198–10203 (2019).

    CAS  Google Scholar 

  211. Liu, X., Inagaki, S. & Gong, J. Heterogeneous molecular systems for photocatalytic CO2 reduction with water oxidation. Angew. Chem. Int. Ed. 55, 14924–14950 (2016).

    CAS  Google Scholar 

  212. Huang, Q. et al. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 7, 53–63 (2020).

    CAS  Google Scholar 

  213. Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

    CAS  Google Scholar 

  214. Sun, L., Campbell, M. G. & Dinca, M. Electrically conductive porous metal–organic frameworks. Angew. Chem. Int. Ed. 55, 3566–3579 (2016).

    CAS  Google Scholar 

  215. Miner, E. M. et al. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 7, 10942 (2016).

    CAS  Google Scholar 

  216. Peng, P. et al. A pyrolysis-free path toward superiorly catalytic nitrogen-coordinated single atom. Sci. Adv. 5, eaaw2322 (2019).

    CAS  Google Scholar 

  217. Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    CAS  Google Scholar 

  218. Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    CAS  Google Scholar 

  219. Zheng, W., Liu, M. & Lee, L. Y. S. Electrochemical instability of metal–organic frameworks: in situ spectroelectrochemical investigation of the real active sites. ACS Catal. 10, 81–92 (2019).

    Google Scholar 

  220. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    CAS  Google Scholar 

  221. Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012).

    CAS  Google Scholar 

  222. Petit, C. & Bandosz, T. J. MOF–graphite oxide composites: combining the uniqueness of graphene layers and metal–organic frameworks. Adv. Mater. 21, 4753–4757 (2009).

    CAS  Google Scholar 

  223. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Google Scholar 

  224. Varela, A. S. et al. Electrochemical reduction of CO2 on metal-nitrogen-doped carbon catalysts. ACS Catal. 9, 7270–7284 (2019).

    CAS  Google Scholar 

  225. Liu, L. et al. Sunlight-assisted hydrogenation of CO2 into ethanol and C2+ hydrocarbons by sodium-promoted Co@C nanocomposites. Appl. Catal. B Environ. 235, 186–196 (2018).

    CAS  Google Scholar 

  226. Wang, L., Yi, Y., Wu, C., Guo, H. & Tu, X. One-step reforming of CO2 and CH4 into high-value liquid chemicals and fuels at room temperature by plasma-driven catalysis. Angew. Chem. Int. Ed. Engl. 56, 13679–13683 (2017).

    CAS  Google Scholar 

  227. Thomas, J. M., Johnson, B. F., Raja, R., Sankar, G. & Midgley, P. A. High-performance nanocatalysts for single-step hydrogenations. Acc. Chem. Res. 36, 20–30 (2003).

    CAS  Google Scholar 

  228. Sun, J. & Bao, X. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts. Chem. Eur. J. 14, 7478–7488 (2008).

    CAS  Google Scholar 

  229. Cui, T. L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    CAS  Google Scholar 

  230. Zhang, J. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat. Catal. 1, 540–546 (2018).

    CAS  Google Scholar 

  231. Mielby, J. et al. Oxidation of bioethanol using zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed. 53, 12513–12516 (2014).

    CAS  Google Scholar 

  232. Park, H. D., Dinca, M. & Roman-Leshkov, Y. Continuous-flow production of succinic anhydrides via catalytic β-lactone carbonylation by Co(CO)4Cr-MIL-101. J. Am. Chem. Soc. 140, 10669–10672 (2018).

    CAS  Google Scholar 

  233. Lan, G. et al. Metal–organic layers as multifunctional two-dimensional nanomaterials for enhanced photoredox catalysis. J. Am. Chem. Soc. 141, 15767–15772 (2019).

    CAS  Google Scholar 

  234. Wu, Y. et al. Synergy of electron transfer and electron utilization via metal–organic frameworks as an electron buffer tank for nicotinamide regeneration. ACS Catal. 10, 2894–2905 (2020).

    CAS  Google Scholar 

  235. Kingston, C. et al. A survival guide for the “electro-curious”. Acc. Chem. Res. 53, 72–83 (2020).

    CAS  Google Scholar 

  236. Rode, E., Davis, M. E. & Hanson, B. E. Propylene hydroformylation on rhodium zeolites X and Y: I. Catalytic activity. J. Catal. 96, 563–573 (1985).

    CAS  Google Scholar 

  237. Van, Vu, T. et al. Hydroformylation of olefins over rhodium supported metal-organic framework catalysts of different structure. Micropor. Mesopor. Mater. 177, 135–142 (2013).

    Google Scholar 

  238. Takahashi, N. Comparison of ethylene with propylene hydroformylation over a Rh-Y zeolite catalyst under atmospheric pressure. J. Catal. 85, 89–97 (1984).

    CAS  Google Scholar 

  239. Zhang, J. et al. Enhancing regioselectivity via tuning the microenvironment in heterogeneous hydroformylation of olefins. J. Catal. 387, 196–206 (2020).

    CAS  Google Scholar 

  240. Sun, Q. et al. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: synergistic effect of high ligand concentration and flexible framework. J. Am. Chem. Soc. 137, 5204–5209 (2015).

    CAS  Google Scholar 

  241. Li, C. et al. Single atom dispersed Rh-biphephos&PPh3@porous organic copolymers: highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chem. 18, 2995–3005 (2016).

    CAS  Google Scholar 

  242. Corma, A. Heterogeneous catalysis: understanding for designing, and designing for applications. Angew. Chem. Int. Ed. 55, 6112–6113 (2016).

    CAS  Google Scholar 

  243. Gallego, E. M. et al. “Ab initio” synthesis of zeolites for preestablished catalytic reactions. Science 355, 1051–1054 (2017).

    CAS  Google Scholar 

  244. Li, C. et al. Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nat. Catal. 1, 547–554 (2018).

    CAS  Google Scholar 

  245. Gallego, E. M., Paris, C., Cantin, A., Moliner, M. & Corma, A. Conceptual similarities between zeolites and artificial enzymes. Chem. Sci. 10, 8009–8015 (2019).

    CAS  Google Scholar 

  246. Zecevic, J., Vanbutsele, G., de Jong, K. P. & Martens, J. A. Nanoscale intimacy in bifunctional catalysts for selective conversion of hydrocarbons. Nature 528, 245–248 (2015).

    CAS  Google Scholar 

  247. Bayram, E. et al. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal. 5, 3514–3527 (2015).

    CAS  Google Scholar 

  248. Serna, P. & Gates, B. C. Zeolite-supported rhodium complexes and clusters: switching catalytic selectivity by controlling structures of essentially molecular species. J. Am. Chem. Soc. 133, 4714–4717 (2011).

    CAS  Google Scholar 

  249. Liu, L. et al. Structural modulation and direct measurement of subnanometric bimetallic PtSn clusters confined in zeolites. Nat. Catal. 3, 628–638 (2020).

    CAS  Google Scholar 

  250. Wei, Y., Parmentier, T. E., de Jong, K. P. & Zecevic, J. Tailoring and visualizing the pore architecture of hierarchical zeolites. Chem. Soc. Rev. 44, 7234–7261 (2015).

    CAS  Google Scholar 

  251. Furukawa, H., Muller, U. & Yaghi, O. M. “Heterogeneity within order” in metal–organic frameworks. Angew. Chem. Int. Ed. 54, 3417–3430 (2015).

    CAS  Google Scholar 

  252. Perez-Ramirez, J., Christensen, C. H., Egeblad, K., Christensen, C. H. & Groen, J. C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chem. Soc. Rev. 37, 2530–2542 (2008).

    CAS  Google Scholar 

  253. Čejka, J. & Mintova, S. Perspectives of micro/mesoporous composites in catalysis. Catal. Rev. 49, 457–509 (2007).

    Google Scholar 

  254. Mintova, S., Jaber, M. & Valtchev, V. Nanosized microporous crystals: emerging applications. Chem. Soc. Rev. 44, 7207–7233 (2015).

    CAS  Google Scholar 

  255. Stock, N. & Biswas, S. Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chem. Rev. 112, 933–969 (2012).

    CAS  Google Scholar 

  256. Diaz, U., Brunel, D. & Corma, A. Catalysis using multifunctional organosiliceous hybrid materials. Chem. Soc. Rev. 42, 4083–4097 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from the European Research Council (grant ERC-AdG-2014-671093, SynCatMatch) and the Spanish Government through the Severo Ochoa Program (SEV-2016-0683).

Author information

Authors and Affiliations

Authors

Contributions

A.C. conceived the structure of this Review. L.L. and A.C. wrote this Review together.

Corresponding author

Correspondence to Avelino Corma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat Rev Mater 6, 244–263 (2021). https://doi.org/10.1038/s41578-020-00250-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-020-00250-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing