Nanophotonic engineering of far-field thermal emitters

Abstract

Thermal emission is a ubiquitous and fundamental process by which all objects at non-zero temperatures radiate electromagnetic energy. This process is often assumed to be incoherent in both space and time, resulting in broadband, omnidirectional light emission toward the far field, with a spectral density related to the emitter temperature by Planck’s law. Over the past two decades, there has been considerable progress in engineering the spectrum, directionality, polarization and temporal response of thermally emitted light using nanostructured materials. This Review summarizes the basic physics of thermal emission, lays out various nanophotonic approaches to engineer thermal emission in the far field, and highlights several applications, including energy harvesting, lighting and radiative cooling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Physics of thermal emission.
Fig. 2: Narrowband and directive thermal emission from nanophotonic systems.
Fig. 3: Dynamic modulation of thermal emission.
Fig. 4: TE control for energy conversion and lighting.
Fig. 5: Radiative cooling.

References

  1. 1.

    Planck, M. Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 309, 553–563 (1901).

    Google Scholar 

  2. 2.

    Mizuno, K. et al. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl Acad. Sci. USA 106, 6044–6047 (2009).

    CAS  Google Scholar 

  3. 3.

    Boyd, R. Radiometry and the Detection of Optical Radiation (Wiley, 1983).

  4. 4.

    Cardoso, T. R. & Castro, A. Sde The blackbody radiation in a D-dimensional universes. Rev. Bras. Ensino Física 27, 559–563 (2005).

    Google Scholar 

  5. 5.

    Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).

    CAS  Google Scholar 

  6. 6.

    Dicke, R. H. The measurement of thermal radiation at microwave frequencies. Rev. Sci. Instrum. 17, 268–275 (2004).

    Google Scholar 

  7. 7.

    Stefan, J. Uber die Beziehung zwischen der Warmestrahlung und der Temperatur, Sitzungsberichte der mathematisch-naturwissenschaftlichen Classe der kaiserlichen. Akad. Wissen. 79, 391–428 (1879).

    Google Scholar 

  8. 8.

    Luo, C., Narayanaswamy, A., Chen, G. & Joannopoulos, J. D. Thermal radiation from photonic crystals: a direct calculation. Phys. Rev. Lett. 93, 19–22 (2004).

    Google Scholar 

  9. 9.

    Francoeur, M., Pinar Mengüç, M. & Vaillon, R. Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method. J. Quant. Spectrosc. Radiat. Transf. 110, 2002–2018 (2009).

    CAS  Google Scholar 

  10. 10.

    Kirchhoff, G. Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Phys. Chem. 185, 275–301 (1860).

    Google Scholar 

  11. 11.

    Narayanaswamy, A., Mayo, J. & Canetta, C. Infrared selective emitters with thin films of polar materials. Appl. Phys. Lett. 104, 183107 (2014).

    Google Scholar 

  12. 12.

    Guazzoni, G. E. High-temperature spectral emittance of oxides of erbium, samarium, neodymium and ytterbium. Appl. Spectrosc. 26, 60–65 (1972).

    CAS  Google Scholar 

  13. 13.

    Mann, D. et al. Electrically driven thermal light emission from individual single-walled carbon nanotubes. Nat. Nanotechnol. 2, 33–38 (2007).

    CAS  Google Scholar 

  14. 14.

    De Zoysa, M. et al. Conversion of broadband to narrowband thermal emission through energy recycling. Nat. Photon. 6, 535–539 (2012).

    Google Scholar 

  15. 15.

    Dobusch, L., Schuler, S., Perebeinos, V. & Mueller, T. Thermal light emission from monolayer MoS2. Adv. Mater. 29, 1701304 (2017).

    Google Scholar 

  16. 16.

    Zhou, Z., Sakr, E., Sun, Y. & Bermel, P. Solar thermophotovoltaics: reshaping the solar spectrum. Nanophotonics 5, 1–21 (2016).

    Google Scholar 

  17. 17.

    Kats, M. A. et al. Ultra-thin perfect absorber employing a tunable phase change material. Appl. Phys. Lett. 101, 221101 (2012).

    Google Scholar 

  18. 18.

    Streyer, W., Law, S., Rooney, G., Jacobs, T. & Wasserman, D. Strong absorption and selective emission from engineered metals with dielectric coatings. Opt. Express 21, 9113–9122 (2013).

    CAS  Google Scholar 

  19. 19.

    Drevillon, J., Joulain, K., Ben-Abdallah, P. & Nefzaoui, E. Far field coherent thermal emission from a bilayer structure. J. Appl. Phys. 109, 034315 (2011).

    Google Scholar 

  20. 20.

    Cornelius, C. M. & Dowling, J. P. Modification of Planck blackbody radiation by photonic band-gap structures. Phys. Rev. A 59, 4736–4746 (1999).

    CAS  Google Scholar 

  21. 21.

    Lin, S.-Y. et al. Enhancement and suppression of thermal emission by a three-dimensional photonic crystal. Phys. Rev. B 62, R2243–R2246 (2000).

    CAS  Google Scholar 

  22. 22.

    Narayanaswamy, A. & Chen, G. Thermal emission control with one-dimensional metallodielectric photonic crystals. Phys. Rev. B 70, 125101 (2004).

    Google Scholar 

  23. 23.

    Celanovic, I., Perreault, D. & Kassakian, J. Resonant-cavity enhanced thermal emission. Phys. Rev. B 72, 075127 (2005).

    Google Scholar 

  24. 24.

    Yang, Z. Y. et al. Narrowband wavelength selective thermal emitters by confined tamm plasmon polaritons. ACS Photonics 4, 2212–2219 (2017).

    CAS  Google Scholar 

  25. 25.

    Liu, X. et al. Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011).

    Google Scholar 

  26. 26.

    Diem, M., Koschny, T. & Soukoulis, C. M. Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys. Rev. B 79, 033101 (2009).

    Google Scholar 

  27. 27.

    Mason, J. A., Smith, S. & Wasserman, D. Strong absorption and selective thermal emission from a midinfrared metamaterial. Appl. Phys. Lett. 98, 241105 (2011).

    Google Scholar 

  28. 28.

    Ikeda, K. et al. Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities. Appl. Phys. Lett. 92, 021117 (2008).

    Google Scholar 

  29. 29.

    Asano, T. et al. Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci. Adv. 2, e1600499 (2016).

    Google Scholar 

  30. 30.

    Askenazi, B. et al. Midinfrared ultrastrong light–matter coupling for THz thermal emission. ACS Photonics 4, 2550–2555 (2017).

    CAS  Google Scholar 

  31. 31.

    Hesketh, P. J., Zemel, J. N. & Gebhart, B. Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation. Phys. Rev. B 37, 10803–10813 (1988).

    CAS  Google Scholar 

  32. 32.

    Maystre, D. in Theory of Wood’s Anomalies 39–83 (Springer, 2012).

  33. 33.

    Greffet, J.-J. et al. Coherent emission of light by thermal sources. Nature 416, 61–64 (2002).

    CAS  Google Scholar 

  34. 34.

    Laroche, M. et al. Highly directional radiation generated by a tungsten thermal source. Opt. Lett. 30, 2623–2625 (2005).

    CAS  Google Scholar 

  35. 35.

    Dahan, N. et al. Enhanced coherency of thermal emission: Beyond the limitation imposed by delocalized surface waves. Phys. Rev. B 76, 045427 (2007).

    Google Scholar 

  36. 36.

    Carminati, R. & Greffet, J.-J. Near-field effects in spatial coherence of thermal sources. Phys. Rev. Lett. 82, 1660–1663 (1999).

    CAS  Google Scholar 

  37. 37.

    Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

    Google Scholar 

  38. 38.

    Argyropoulos, C., Le, K. Q., Mattiucci, N., D’Aguanno, G. & Alù, A. Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces. Phys. Rev. B 87, 205112 (2013).

    Google Scholar 

  39. 39.

    Chung, H., Zhou, Z. & Bermel, P. Collimated thermal radiation transfer via half Maxwell’s fish-eye lens for thermophotovoltaics. Appl. Phys. Lett. 110, 201111 (2017).

    Google Scholar 

  40. 40.

    Chalabi, H., Alù, A. & Brongersma, M. L. Focused thermal emission from a nanostructured SiC surface. Phys. Rev. B 94, 094307 (2016).

    Google Scholar 

  41. 41.

    Sakr, E. & Bermel, P. Angle-selective reflective filters for exclusion of background thermal emission. Phys. Rev. Appl. 7, 044020 (2017).

    Google Scholar 

  42. 42.

    Liberal, I. & Engheta, N. Manipulating thermal emission with spatially static fluctuating fields in arbitrarily shaped epsilon-near-zero bodies. Proc. Natl Acad. Sci. USA 115, 2878–2883 (2018).

    CAS  Google Scholar 

  43. 43.

    Schuller, J. A., Taubner, T. & Brongersma, M. L. Optical antenna thermal emitters. Nat. Photon. 3, 658–661 (2009).

    CAS  Google Scholar 

  44. 44.

    Miyazaki, H. T. et al. Thermal emission of two-color polarized infrared waves from integrated plasmon cavities. Appl. Phys. Lett. 92, 141114 (2008).

    Google Scholar 

  45. 45.

    Cohen, M. H. & Lekner, J. Theory of hot electrons in gases, liquids, and solids. Phys. Rev. 158, 305–309 (1967).

    CAS  Google Scholar 

  46. 46.

    Wadsworth, S. L., Clem, P. G., Branson, E. D. & Boreman, G. D. Broadband circularly-polarized infrared emission from multilayer metamaterials. Opt. Mater. Express 1, 466 (2011).

    CAS  Google Scholar 

  47. 47.

    Wu, C. et al. Spectrally selective chiral silicon metasurfaces based on infrared Fano resonances. Nat. Commun. 5, 3892 (2014).

    CAS  Google Scholar 

  48. 48.

    Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    CAS  Google Scholar 

  49. 49.

    Hildenbrand, J. et al. Fast transient temperature operating micromachined emitter for mid-infrared optical gas sensing systems: design, fabrication, characterization and optimization. Microsyst. Technol. 16, 745–754 (2010).

    CAS  Google Scholar 

  50. 50.

    Sakat, E. et al. Enhancing thermal radiation with nanoantennas to create infrared sources with high modulation rates. Optica 5, 175 (2018).

    CAS  Google Scholar 

  51. 51.

    Mori, T., Yamauchi, Y., Honda, S. & Maki, H. An electrically driven, ultrahigh-speed, on-chip light emitter based on carbon nanotubes. Nano Lett. 14, 3277–3283 (2014).

    CAS  Google Scholar 

  52. 52.

    Pyatkov, F. et al. Cavity-enhanced light emission from electrically driven carbon nanotubes. Nat. Photon. 10, 420–427 (2016).

    CAS  Google Scholar 

  53. 53.

    Lui, C. H., Mak, K. F., Shan, J. & Heinz, T. F. Ultrafast photoluminescence from graphene. Phys. Rev. Lett. 105, 127404 (2010).

    Google Scholar 

  54. 54.

    Agranat, M. B. et al. Thermal emission of hot electrons in a metal. JETP Lett. 101, 598–602 (2015).

    CAS  Google Scholar 

  55. 55.

    Mortimer, R. J. Electrochromic materials. Chem. Soc. Rev. 26, 147 (1997).

    CAS  Google Scholar 

  56. 56.

    Granqvist, C. G., Lansåker, P. C., Mlyuka, N. R., Niklasson, G. A. & Avendaño, E. Progress in chromogenics: new results for electrochromic and thermochromic materials and devices. Sol. Energy Mater. Sol. Cells 93, 2032–2039 (2009).

    CAS  Google Scholar 

  57. 57.

    Jones, R. M. Mechanics of Composite Materials (Scripta Book Company, 1975).

  58. 58.

    Hale, J. S. & Woollam, J. A. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films 339, 174–180 (1999).

    CAS  Google Scholar 

  59. 59.

    Vassant, S. et al. Electrical modulation of emissivity. Appl. Phys. Lett. 102, 081125 (2013).

    Google Scholar 

  60. 60.

    Inoue, T., Zoysa, M., De, Asano, T. & Noda, S. Realization of dynamic thermal emission control. Nat. Mater. 13, 928–931 (2014).

    CAS  Google Scholar 

  61. 61.

    Brar, V. W. et al. Electronic modulation of infrared radiation in graphene plasmonic resonators. Nat. Commun. 6, 7032 (2015).

    CAS  Google Scholar 

  62. 62.

    Jun, Y. C., Luk, T. S., Robert Ellis, A., Klem, J. F. & Brener, I. Doping-tunable thermal emission from plasmon polaritons in semiconductor epsilon-near-zero thin films. Appl. Phys. Lett. 105, 131109 (2014).

    Google Scholar 

  63. 63.

    Malyutenko, V. K., Liptuga, A. I., Teslenko, G. I. & Botte, V. A. Thermal emission of semiconductors under nonequilibrium conditions. Infrared Phys. 29, 693–700 (1989).

    CAS  Google Scholar 

  64. 64.

    Xiao, Y., Charipar, N. A., Salman, J., Piqué, A. & Kats, M. A. Nanosecond mid-infrared pulse generation via modulated thermal emissivity. Preprint at https://arxiv.org/abs/1810.05351 (2018).

  65. 65.

    Coppens, Z. J. & Valentine, J. G. Spatial and temporal modulation of thermal emission. Adv. Mater. 29, 1701275 (2017).

    Google Scholar 

  66. 66.

    Du, K.-K. et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST. Light Sci. Appl. 6, e16194 (2016).

    Google Scholar 

  67. 67.

    Tittl, A. et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv. Mater. 27, 4597–4603 (2015).

    CAS  Google Scholar 

  68. 68.

    Qazilbash, M. M. et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318, 1750–1753 (2007).

    CAS  Google Scholar 

  69. 69.

    Kats, M. A. et al. Vanadium dioxide as a natural disordered metamaterial: perfect thermal emission and large broadband negative differential thermal emittance. Phys. Rev. X 3, 041004 (2014).

    Google Scholar 

  70. 70.

    Roney, P. J. et al. Zero-differential thermal emission using thermochromic samarium nickelate. In Conf. Lasers and Electro-Optics FM4G.2 (OSA, 2017).

  71. 71.

    Kazemi Moridani, A. et al. Plasmonic thermal emitters for dynamically tunable infrared radiation. Adv. Opt. Mater. 5, 1600993 (2017).

    Google Scholar 

  72. 72.

    Liu, X. & Padilla, W. J. Thermochromic infrared metamaterials. Adv. Mater. 28, 871–875 (2016).

    CAS  Google Scholar 

  73. 73.

    Liu, X. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).

    CAS  Google Scholar 

  74. 74.

    Kollyukh, O. G., Liptuga, A. I., Morozhenko, V. & Pipa, V. I. Magnetic-field modulation of the spectrum of coherent thermal radiation of semiconductor layers. Phys. Rev. B 71, 073306 (2005).

    Google Scholar 

  75. 75.

    Rethfeld, B., Kaiser, A., Vicanek, M. & Simon, G. Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation. Phys. Rev. B 65, 214303 (2002).

    Google Scholar 

  76. 76.

    Boyd, R. W. Nonlinear Optics (Academic, 2008).

  77. 77.

    Biehs, S.-A. & Ben-Abdallah, P. Revisiting super-Planckian thermal emission in the far-field regime. Phys. Rev. B 93, 165405 (2016).

    Google Scholar 

  78. 78.

    Ruan, Z. & Fan, S. Superscattering of light from subwavelength nanostructures. Phys. Rev. Lett. 105, 013901 (2010).

    Google Scholar 

  79. 79.

    Luque, Antonio and Hegedus, S. Handbook of Photovoltaic Science and Engineering (Wiley, 2011).

  80. 80.

    Rephaeli, E. & Fan, S. Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit. Opt. Express 17, 15145–15159 (2009).

    CAS  Google Scholar 

  81. 81.

    Lenert, A. et al. A nanophotonic solar thermophotovoltaic device. Nat. Nanotechnol. 9, 126–130 (2015).

    Google Scholar 

  82. 82.

    Seyf, H. R. & Henry, A. Thermophotovoltaics: a potential pathway to high efficiency concentrated solar power. Energy Environ. Sci. 9, 2654–2665 (2016).

    CAS  Google Scholar 

  83. 83.

    Chen, K., Santhanam, P. & Fan, S. Suppressing sub-bandgap phonon-polariton heat transfer in near-field thermophotovoltaic devices for waste heat recovery. Appl. Phys. Lett. 107, 091106 (2015).

    Google Scholar 

  84. 84.

    Fraas, L. M., Avery, J. E. & Huang, H. X. Thermophotovoltaic furnace–generator for the home using low bandgap GaSb cells. Semicond. Sci. Technol. 18, S247–S253 (2003).

    CAS  Google Scholar 

  85. 85.

    Byrnes, S. J., Blanchard, R. & Capasso, F. Harvesting renewable energy from Earth’s mid-infrared emissions. Proc. Natl Acad. Sci. USA 111, 3927–3932 (2014).

    CAS  Google Scholar 

  86. 86.

    Harder, N.-P. & Wurfel, P. Theoretical limits of thermophotovoltaic solar energy conversion. Semicond. Sci. Technol. 18, S151–S157 (2003).

    CAS  Google Scholar 

  87. 87.

    Bermel, P. et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314–A334 (2010).

    Google Scholar 

  88. 88.

    Bierman, D. M. et al. Enhanced photovoltaic energy conversion using thermally based spectral shaping. Nat. Energy 1, 16068 (2016).

    CAS  Google Scholar 

  89. 89.

    Fiorino, A. et al. Nanogap near-field thermophotovoltaics. Nat. Nanotechnol. 13, 806–811 (2018).

    CAS  Google Scholar 

  90. 90.

    Sugimoto, M. et al. The Infra-red suppression in the incandescent light from a surface with submicron holes. J. Light Vis. Environ. 18, 5–10 (1994).

    Google Scholar 

  91. 91.

    Goldstein, I. S., Fontana, R. P., Thorington, L. & Howson, R. P. The design, construction and performance of an incandescent light source with a transparent heat mirror. Light. Res. Technol. 18, 93–97 (1986).

    Google Scholar 

  92. 92.

    Ilic, O. et al. Tailoring high-temperature radiation and the resurrection of the incandescent source. Nat. Nanotechnol. 11, 320–324 (2016).

    CAS  Google Scholar 

  93. 93.

    Lochbaum, A. et al. On-chip narrowband thermal emitter for mid-IR optical gas sensing. ACS Photonics 4, 1371–1380 (2017).

    CAS  Google Scholar 

  94. 94.

    Brucoli, G. et al. High efficiency quasi-monochromatic infrared emitter. Appl. Phys. Lett. 104, 081101 (2014).

    Google Scholar 

  95. 95.

    Arpin, K. A. et al. Three-dimensional self-assembled photonic crystals with high temperature stability for thermal emission modification. Nat. Commun. 4, 2630 (2013).

    Google Scholar 

  96. 96.

    Woolf, D. et al. Heterogeneous metasurface for high temperature selective emission. Appl. Phys. Lett. 105, 081110 (2014).

    Google Scholar 

  97. 97.

    Yeng, Y. X. et al. Enabling high-temperature nanophotonics for energy applications. Proc. Natl Acad. Sci. USA 109, 2280–2285 (2012).

    CAS  Google Scholar 

  98. 98.

    Rinnerbauer, V. et al. High-temperature stability and selective thermal emission of polycrystalline tantalum photonic crystals. Opt. Express 21, 11482–11491 (2013).

    CAS  Google Scholar 

  99. 99.

    Dyachenko, P. N. et al. Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions. Nat. Commun. 7, 11809 (2016).

    CAS  Google Scholar 

  100. 100.

    Chubb, D. L., Pal, A. T., Patton, M. O. & Jenkins, P. P. Rare earth doped high temperature ceramic selective emitters. J. Eur. Ceram. Soc. 19, 2551–2562 (1999).

    CAS  Google Scholar 

  101. 101.

    Fixsen, D. J. The temperature of the cosmic microwave background. Astrophys. J. 707, 916–920 (2009).

    Google Scholar 

  102. 102.

    Hossain, M. M. & Gu, M. Radiative cooling: principles, progress, and potentials. Adv. Sci. 3, 1500360 (2016).

    Google Scholar 

  103. 103.

    Gentle, A. R. & Smith, G. B. Radiative heat pumping from the Earth using surface phonon resonant nanoparticles. Nano Lett. 10, 373–379 (2010).

    CAS  Google Scholar 

  104. 104.

    Rephaeli, E., Raman, A. & Fan, S. Ultrabroadband photonic structures to achieve high-performance daytime radiative cooling. Nano Lett. 13, 1457–1461 (2013).

    CAS  Google Scholar 

  105. 105.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Google Scholar 

  106. 106.

    Hossain, M. M., Jia, B. & Gu, M. A Metamaterial emitter for highly efficient radiative cooling. Adv. Opt. Mater. 3, 1047–1051 (2015).

    CAS  Google Scholar 

  107. 107.

    Zhu, L., Raman, A. P. & Fan, S. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proc. Natl Acad. Sci. USA 112, 12282–12287 (2015).

    CAS  Google Scholar 

  108. 108.

    Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    CAS  Google Scholar 

  109. 109.

    Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    CAS  Google Scholar 

  110. 110.

    Gentle, A. R. & Smith, G. B. A Subambient open roof surface under the mid-summer sun. Adv. Sci. 2, 1500119 (2015).

    Google Scholar 

  111. 111.

    Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    CAS  Google Scholar 

  112. 112.

    Wu, S.-H. et al. Thermal homeostasis using microstructured phase-change materials. Optica 4, 1390–1396 (2017).

    Google Scholar 

  113. 113.

    Zhou, M. et al. Accelerating vapor condensation with daytime radiative cooling. Preprint at https://arxiv.org/abs/1804.10736 (2018).

  114. 114.

    Sun, K. et al. Metasurface optical solar reflectors using AZO transparent conducting oxides for radiative cooling of spacecraft. ACS Photonics 5, 495–501 (2018).

    CAS  Google Scholar 

  115. 115.

    Ilic, O., Went, C. M. & Atwater, H. A. Nanophotonic heterostructures for efficient propulsion and radiative cooling of relativistic light sails. Nano Lett. 18, 5583–5589 (2018).

    CAS  Google Scholar 

  116. 116.

    Tong, J. K. et al. Infrared-transparent visible-opaque fabrics for wearable personal thermal management. ACS Photonics 2, 769–778 (2015).

    CAS  Google Scholar 

  117. 117.

    Hsu, P.-C. et al. Radiative human body cooling by nanoporous polyethylene textile. Science 353, 1019–1023 (2016).

    CAS  Google Scholar 

  118. 118.

    Yang, A. et al. Thermal management in nanofiber-based face mask. Nano Lett. 17, 3506–3510 (2017).

    CAS  Google Scholar 

  119. 119.

    Hsu, P.-C. et al. Personal thermal management by metallic nanowire-coated textile. Nano Lett. 15, 365–371 (2015).

    CAS  Google Scholar 

  120. 120.

    Cai, L. et al. Warming up human body by nanoporous metallized polyethylene textile. Nat. Commun. 8, 496 (2017).

    Google Scholar 

  121. 121.

    Hsu, P. et al. A dual-mode textile for human body radiative heating and cooling. Sci. Adv. 3, e1700895 (2017).

    Google Scholar 

  122. 122.

    Xiao, L. et al. Fast adaptive thermal camouflage based on flexible VO 2 /graphene/CNT thin films. Nano Lett. 15, 8365–8370 (2015).

    CAS  Google Scholar 

  123. 123.

    Li, Y., Bai, X., Yang, T., Luo, H. & Qiu, C.-W. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Google Scholar 

  124. 124.

    Ridolfo, A., Savasta, S. & Hartmann, M. J. Nonclassical radiation from thermal cavities in the ultrastrong coupling regime. Phys. Rev. Lett. 110, 163601 (2013).

    CAS  Google Scholar 

  125. 125.

    Zhou, M. et al. Analog of superradiant emission in thermal emitters. Phys. Rev. B 92, 024302 (2015).

    Google Scholar 

  126. 126.

    Mallawaarachchi, S., Premaratne, M., Gunapala, S. D. & Maini, P. K. Tuneable superradiant thermal emitter assembly. Phys. Rev. B 95, 155443 (2017).

    Google Scholar 

  127. 127.

    Zhu, L. & Fan, S. Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014).

    Google Scholar 

  128. 128.

    Green, M. A. Time-asymmetric photovoltaics. Nano Lett. 12, 5985–5988 (2012).

    CAS  Google Scholar 

  129. 129.

    Greffet, J.-J., Bouchon, P., Brucoli, G., Sakat, E. & Marquier, F. Light emission by nonequilibrium bodies: local Kirchhoff law. Phys. Rev. X 8, 021008 (2018).

    CAS  Google Scholar 

  130. 130.

    Rytov, S. M., Kravtsov, Y. A. & Tatarskii, V. I. Priniciples of Statistical Radiophysics (Springer, 1989).

  131. 131.

    Sun, C.-K., Vallée, F., Acioli, L. H., Ippen, E. P. & Fujimoto, J. G. Femtosecond-tunable measurement of electron thermalization in gold. Phys. Rev. B 50, 15337–15348 (1994).

    CAS  Google Scholar 

  132. 132.

    Cho, C.-H., Aspetti, C. O., Park, J. & Agarwal, R. Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photon. 7, 285–289 (2013).

    CAS  Google Scholar 

  133. 133.

    Mandel, Leonard and Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

  134. 134.

    Donges, A. The coherence length of black-body radiation. Eur. J. Phys. 19, 245–249 (1998).

    CAS  Google Scholar 

  135. 135.

    Saleh, B. E. A. & Teich, M. C. Fundamentals of Photonics (Wiley, 2007).

  136. 136.

    Haus, H. Waves and Fields in Optoelectronics (Prentice Hall, 1984).

  137. 137.

    Liu, B., Gong, W., Yu, B., Li, P. & Shen, S. Perfect thermal emission by nanoscale transmission line resonators. Nano Lett. 17, 666–672 (2017).

    CAS  Google Scholar 

  138. 138.

    Ghebrebrhan, M. et al. Tailoring thermal emission via Q matching of photonic crystal resonances. Phys. Rev. A 83, 033810 (2011).

    Google Scholar 

  139. 139.

    Inoue, T., De Zoysa, M., Asano, T. & Noda, S. Realization of narrowband thermal emission with optical nanostructures. Optica 2, 27–35 (2015).

    CAS  Google Scholar 

  140. 140.

    Joulain, K., Mulet, J. P., Marquier, F., Carminati, R. & Greffet, J. J. Surface electromagnetic waves thermally excited: radiative heat transfer, coherence properties and Casimir forces revisited in the near field. Surf. Sci. Rep. 57, 59–112 (2005).

    CAS  Google Scholar 

  141. 141.

    Kim, K. et al. Radiative heat transfer in the extreme near field. Nature 528, 387–391 (2015).

    CAS  Google Scholar 

  142. 142.

    Rousseau, E. et al. Radiative heat transfer at the nanoscale. Nat. Photon. 3, 514–517 (2009).

    CAS  Google Scholar 

  143. 143.

    Cuevas, J. C. & García-Vidal, F. J. Radiative heat transfer. ACS Photonics 5, 3896–3915 (2018).

    CAS  Google Scholar 

  144. 144.

    Babuty, A., Joulain, K., Chapuis, P. O., Greffet, J. J. & De Wilde, Y. Blackbody spectrum revisited in the near field. Phys. Rev. Lett. 110, 146103 (2013).

    Google Scholar 

  145. 145.

    Shi, J., Liu, B., Li, P., Ng, L. Y. & Shen, S. Near-field energy extraction with hyperbolic metamaterials. Nano Lett. 15, 1217–1221 (2015).

    CAS  Google Scholar 

  146. 146.

    Yu, Z. et al. Enhancing far-field thermal emission with thermal extraction. Nat. Commun. 4, 1730 (2013).

    Google Scholar 

Download references

Acknowledgements

M.A.K. acknowledges financial support from the NSF (ECCS-1750341) and ONR (N00014-16-1-2556). A.K. and A.A. acknowledge support from the AFOSR (MURI grant no. FA9550-17-1-0002), the Department of Defense, the Simons Foundation and the National Science Foundation. D.G.B. acknowledges support from the Knut and Alice Wallenberg Foundation. We acknowledge S. Noda for sending data for our figures, and A. Lenert for helpful discussions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mikhail A. Kats.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baranov, D.G., Xiao, Y., Nechepurenko, I.A. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019). https://doi.org/10.1038/s41563-019-0363-y

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing