Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton’s tyrosine kinase-dependent pathway


Initiation of the innate sterile inflammatory response that can develop in response to microparticle exposure is little understood. Here, we report that a potent type 2 immune response associated with the accumulation of neutrophils, eosinophils and alternatively activated (M2) macrophages was observed in response to sterile microparticles similar in size to wear debris associated with prosthetic implants. Although elevations in interleukin-33 (IL-33) and type 2 cytokines occurred independently of caspase-1 inflammasome signalling, the response was dependent on Bruton’s tyrosine kinase (BTK). IL-33 was produced by macrophages and BTK-dependent expression of IL-33 by macrophages was sufficient to initiate the type 2 response. Analysis of inflammation in patient periprosthetic tissue also revealed type 2 responses under aseptic conditions in patients undergoing revision surgery. These findings indicate that microparticle-induced sterile inflammation is initiated by macrophages activated to produce IL-33. They further suggest that both BTK and IL-33 may provide therapeutic targets for wear debris-induced periprosthetic inflammation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The MP-induced type 2 innate response is BTK dependent.
Fig. 2: Macrophages produce IL-33 and IL-33 blockade inhibits the type 2 response.
Fig. 3: IL-33 restores the response after BTK inhibition.
Fig. 4: Macrophages rescue type 2 inflammation in BTK-deficient mice.
Fig. 5: MP-induced articular tissue inflammation is SYK, BTK and IL33 dependent.
Fig. 6: Increased M2 macrophage markers detected in periprosthetic tissues.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Kurtz, S., Ong, K., Lau, E., Mowat, F. & Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 89, 780–785 (2007).

    Google Scholar 

  2. 2.

    Cobelli, N., Scharf, B., Crisi, G. M., Hardin, J. & Santambrogio, L. Mediators of the inflammatory response to joint replacement devices. Nat. Rev. Rheumatol. 7, 600–608 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Goodman, S. B. et al. Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J. R. Soc. Interface 11, 20130962 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Antonios, J. K., Yao, Z., Li, C., Rao, A. J. & Goodman, S. B. Macrophage polarization in response to wear particles in vitro. Cell. Mol. Immunol. 10, 471–482 (2013).

    CAS  Article  Google Scholar 

  6. 6.

    Nakashima, Y. et al. Signaling pathways for tumor necrosis factor-alpha and interleukin-6 expression in human macrophages exposed to titanium-alloy particulate debris in vitro. J. Bone Joint Surg. Am. 81, 603–615 (1999).

    CAS  Article  Google Scholar 

  7. 7.

    Potnis, P. A., Dutta, D. K. & Wood, S. C. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell Immunol. 282, 53–65 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Bi, Y., Collier, T. O., Goldberg, V. M., Anderson, J. M. & Greenfield, E. M. Adherent endotoxin mediates biological responses of titanium particles without stimulating their phagocytosis. J. Orthop. Res. 20, 696–703 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Greenfield, E. M., Beidelschies, M. A., Tatro, J. M., Goldberg, V. M. & Hise, A. G. Bacterial pathogen-associated molecular patterns stimulate biological activity of orthopaedic wear particles by activating cognate Toll-like receptors. J. Biol. Chem. 285, 32378–32384 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Mishra, P. K. et al. Micrometer-sized titanium particles can induce potent Th2-type responses through TLR4-independent pathways. J. Immunol. 187, 6491–6498 (2011).

    CAS  Article  Google Scholar 

  11. 11.

    Kool, M. et al. An unexpected role for uric acid as an inducer of T helper 2 cell immunity to inhaled antigens and inflammatory mediator of allergic asthma. Immunity 34, 527–540 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Kuroda, E. et al. Silica crystals and aluminum salts regulate the production of prostaglandin in macrophages via NALP3 inflammasome-independent mechanisms. Immunity 34, 514–526 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Rathinam, V. A., Vanaja, S. K. & Fitzgerald, K. A. Regulation of inflammasome signaling. Nat. Immunol. 13, 333–342 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    Mayer-Barber, K. D. et al. Caspase-1 independent IL-1β production is critical for host resistance to Mycobacterium tuberculosis and does not require TLR signaling in vivo. J. Immunol. 184, 3326–3330 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Ng, G. et al. Receptor-independent, direct membrane binding leads to cell-surface lipid sorting and Syk kinase activation in dendritic cells. Immunity 29, 807–818 (2008).

    CAS  Article  Google Scholar 

  16. 16.

    Flach, T. L. et al. Alum interaction with dendritic cell membrane lipids is essential for its adjuvanticity. Nat. Med. 17, 479–487 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    Yamamoto, N. et al. The orally available spleen tyrosine kinase inhibitor 2-[7-(3,4-dimethoxyphenyl)-imidazo[1,2-c]pyrimidin-5-ylamino]nicotinamide dihydrochloride (BAY 61-3606) blocks antigen-induced airway inflammation in rodents. J. Pharmacol. Exp. Ther. 306, 1174–1181 (2003).

    CAS  Article  Google Scholar 

  18. 18.

    Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    CAS  Article  Google Scholar 

  19. 19.

    Whang, J. A. & Chang, B. Y. Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Drug Discov. Today 19, 1200–1204 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Baba, Y. et al. BLNK mediates Syk-dependent Btk activation. Proc. Natl Acad. Sci. USA 98, 2582–2586 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    Shinohara, M. et al. The orally available Btk inhibitor ibrutinib (PCI-32765) protects against osteoclast-mediated bone loss. Bone 60, 8–15 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Pan, Z. et al. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem 2, 58–61 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Honigberg, L. A. et al. The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proc. Natl Acad. Sci. USA 107, 13075–13080 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Dubovsky, J. A. et al. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 122, 2539–2549 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Anthony, R. M. et al. Memory T(H)2 cells induce alternatively activated macrophages to mediate protection against nematode parasites. Nat. Med. 12, 955–960 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    Thomas, J. D. et al. Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes. Science 261, 355–358 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    Rawlings, D. J. et al. Mutation of unique region of Bruton’s tyrosine kinase in immunodeficient XID mice. Science 261, 358–361 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    Khan, W. N. et al. Defective B cell development and function in Btk-deficient mice. Immunity 3, 283–299 (1995).

    CAS  Article  Google Scholar 

  29. 29.

    Sonnenberg, G. F. & Artis, D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat. Med. 21, 698–708 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Carriere, V. et al. IL-33, the IL-1-like cytokine ligand for ST2 receptor, is a chromatin-associated nuclear factor in vivo. Proc. Natl Acad. Sci. USA 104, 282–287 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Liu, T. et al. Aspirin-exacerbated respiratory disease involves a cysteinyl leukotriene-driven IL-33-mediated mast cell activation pathway. J. Immunol. 195, 3537–3545 (2015).

    CAS  Article  Google Scholar 

  32. 32.

    Mishra, P. K., Patel, N., Wu, W., Bleich, D. & Gause, W. C. Prevention of type 1 diabetes through infection with an intestinal nematode parasite requires IL-10 in the absence of a Th2-type response. Mucosal Immunol. 6, 297–308 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Vannella, K. M. et al. Combinatorial targeting of TSLP, IL-25, and IL-33 in type 2 cytokine-driven inflammation and fibrosis. Sci. Transl. Med. 8, 337ra365 (2016).

    Article  Google Scholar 

  34. 34.

    Gause, W. C., Wynn, T. A. & Allen, J. E. Type 2 immunity and wound healing: evolutionary refinement of adaptive immunity by helminths. Nat. Rev. Immunol. 13, 607–614 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Qi, F. et al. Macrophages produce IL-33 by activating MAPK signaling pathway during RSV infection. Mol. Immunol. 87, 284–292 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Fock, V. et al. Macrophage-derived IL-33 is a critical factor for placental growth. J. Immunol. 191, 3734–3743 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Chang, Y. J. et al. Innate lymphoid cells mediate influenza-induced airway hyper-reactivity independently of adaptive immunity. Nat. Immunol. 12, 631–638 (2011).

    CAS  Article  Google Scholar 

  38. 38.

    Casella, J. F., Flanagan, M. D. & Lin, S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 293, 302–305 (1981).

    CAS  Article  Google Scholar 

  39. 39.

    Kim, S. M. et al. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. Sci. Rep. 7, 11118 (2017).

    Article  Google Scholar 

  40. 40.

    Degterev, A. et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112–119 (2005).

    CAS  Article  Google Scholar 

  41. 41.

    Cui, H. et al. Necrostatin-1 treatment inhibits osteocyte necroptosis and trabecular deterioration in ovariectomized rats. Sci. Rep. 6, 33803 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Gastman, B. R., Johnson, D. E., Whiteside, T. L. & Rabinowich, H. Caspase-mediated degradation of T-cell receptor zeta-chain. Cancer Res. 59, 1422–1427 (1999).

    CAS  Google Scholar 

  43. 43.

    Amaral, F. A. et al. NLRP3 inflammasome-mediated neutrophil recruitment and hypernociception depend on leukotriene B(4) in a murine model of gout. Arthritis Rheum. 64, 474–484 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    van Beuningen, H. M., Glansbeek, H. L., van der Kraan, P. M. & van den Berg, W. B. Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-β injections. Osteoarthritis Cartilage 8, 25–33 (2000).

    Article  Google Scholar 

  45. 45.

    Zhang, T. et al. The effect of osteoprotegerin gene modification on wear debris-induced osteolysis in a murine model of knee prosthesis failure. Biomaterials 30, 6102–6108 (2009).

    CAS  Article  Google Scholar 

  46. 46.

    Hashimoto, D. et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38, 792–804 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Jenkins, S. J. et al. IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. J. Exp. Med. 210, 2477–2491 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Martinez, F. O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006).

    CAS  Article  Google Scholar 

  49. 49.

    Koulouvaris, P. et al. Expression profiling reveals alternative macrophage activation and impaired osteogenesis in periprosthetic osteolysis. J. Orthop. Res. 26, 106–116 (2008).

    CAS  Article  Google Scholar 

Download references


This work was supported by National Institutes of Health grants: R01DK11379002, R01AI13163401A1, R01AI121250, R01AI101935, RO1AI124346, RO1AR060782 and R01AI114647-01A1. We would like to acknowledge Sandvik Osprey Powders, UK for generously providing the micrometre-sized CoCr material used in this paper. In addition we would like to thank E. M. Adler, M. C. Riley, F. R. Patterson and J. S. Hwang (Department of Orthopaedic Surgery, Rutgers – New Jersey Medical School) and S. R. Peters (Department of Pathology and Laboratory Medicine, Rutgers – New Jersey Medical School) for providing clinical samples and assistance in tissue preparation.

Author information




W.C.G., P.K.M., M.P. and K.S.B. designed the experiments. P.K.M. and M.P. conducted all the experiments. B.B. and J.M. helped in collecting and processing of tissue biopsies from human clinical samples and A.M. provided technical assistance with immune staining. N.J.H. determined the sizes of wear debris particles and helped in particle separation. T.-D.K. provided caspase1-/- mice and technical suggestions for the experiments. K.S.B. and J.B. coordinated the clinical studies with human subjects. V.D. and R.B.B. provided technical assistance and advice in experiments assessing macrophage death and phagocytosis. N.C. and E.M.B. provided ST2-/- mice, laboratory assistance and suggestions for the experiments. A.R. provided the CCR2 reporter mice and associated technical assistance. W.C.G., P.K.M. and M.P. wrote the manuscript.

Corresponding author

Correspondence to William C. Gause.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–12

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mishra, P.K., Palma, M., Buechel, B. et al. Sterile particle-induced inflammation is mediated by macrophages releasing IL-33 through a Bruton’s tyrosine kinase-dependent pathway. Nature Mater 18, 289–297 (2019).

Download citation

Further reading