Zika virus is a mosquito-borne virus that is associated with neurodegenerative diseases, including Guillain–Barré syndrome1 and congenital Zika syndrome2. As Zika virus targets the nervous system, there is an urgent need to develop therapeutic strategies that inhibit Zika virus infection in the brain. Here, we have engineered a brain-penetrating peptide that works against Zika virus and other mosquito-borne viruses. We evaluated the therapeutic efficacy of the peptide in a lethal Zika virus mouse model exhibiting systemic and brain infection. Therapeutic treatment protected against mortality and markedly reduced clinical symptoms, viral loads and neuroinflammation, as well as mitigated microgliosis, neurodegeneration and brain damage. In addition to controlling systemic infection, the peptide crossed the blood–brain barrier to reduce viral loads in the brain and protected against Zika-virus-induced blood–brain barrier injury. Our findings demonstrate how engineering strategies can be applied to develop peptide therapeutics and support the potential of a brain-penetrating peptide to treat neurotropic viral infections.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

Data supporting the findings of this study are available within the Article and its Supplementary Information files and from the corresponding author upon reasonable request. The data sets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Cao-Lormeau, V.-M. et al. Guillain–Barré syndrome outbreak associated with Zika virus infection in French Polynesia: a case–control study. Lancet 387, 1531–1539 (2016).

  2. 2.

    Rasmussen, S. A., Jamieson, D. J., Honein, M. A. & Petersen, L. R. Zika virus and birth defects—reviewing the evidence for causality. N. Engl. J. Med. 2016, 1981–1987 (2016).

  3. 3.

    Cugola, F. R. et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 534, 267–271 (2016).

  4. 4.

    Garcez, P. P. et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 352, 816–818 (2016).

  5. 5.

    Broutet, N. et al. Zika virus as a cause of neurologic disorders. N. Engl. J. Med. 374, 1506–1509 (2016).

  6. 6.

    Araujo, A. Q., Silva, M. T. T. & Araujo, A. P. Zika virus-associated neurological disorders: a review. Brain 139, 2122–2130 (2016).

  7. 7.

    Abrams, R. P., Solis, J. & Nath, A. Therapeutic approaches for Zika virus infection of the nervous system. Neurotherapeutics 14, 1027–1048 (2017).

  8. 8.

    Costa, V. V. et al. N-Methyl-d-aspartate (NMDA) receptor blockade prevents neuronal death induced by Zika virus infection. mBio 8, e00350-17 (2017).

  9. 9.

    Dallmeier, K. & Neyts, J. Zika and other emerging viruses: aiming at the right target. Cell Host Microbe 20, 420–422 (2016).

  10. 10.

    Saiz, J.-C. & Martín-Acebes, M. A. The race to find antivirals for Zika virus. Antimicrob. Agents Chemother. 61, e00411–e00417 (2017).

  11. 11.

    Boldescu, V., Behnam, M. A., Vasilakis, N. & Klein, C. D. Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat. Rev. Drug Discov. 16, 565–586 (2017).

  12. 12.

    Li, F. et al. Viral infection of the central nervous system and neuroinflammation precede blood–brain barrier disruption during Japanese encephalitis virus infection. J. Virol. 89, 5602–5614 (2015).

  13. 13.

    Burt, F. J., Rolph, M. S., Rulli, N. E., Mahalingam, S. & Heise, M. T. Chikungunya: a re-emerging virus. Lancet 379, 662–671 (2012).

  14. 14.

    Carod-Artal, F. J., Wichmann, O., Farrar, J. & Gascón, J. Neurological complications of dengue virus infection. Lancet Neurol. 12, 906–919 (2013).

  15. 15.

    Badani, H., Garry, R. F. & Wimley, W. C. Peptide entry inhibitors of enveloped viruses: the importance of interfacial hydrophobicity. Biochim. Biophys. Acta Biomembr. 1838, 2180–2197 (2014).

  16. 16.

    Kostyuchenko, V. A. et al. Structure of the thermally stable Zika virus. Nature 533, 425–428 (2016).

  17. 17.

    Cho, N.-J. et al. Mechanism of an amphipathic α-helical peptide’s antiviral activity involves size-dependent virus particle lysis. ACS Chem. Biol. 4, 1061–1067 (2009).

  18. 18.

    Jackman, J. A., Saravanan, R., Zhang, Y., Tabaei, S. R. & Cho, N. J. Correlation between membrane partitioning and functional activity in a single lipid vesicle assay establishes design guidelines for antiviral peptides. Small. 11, 2372–2379 (2015).

  19. 19.

    Stalmans, S. et al. Cell-penetrating peptides selectively cross the blood–brain barrier in vivo. PLoS One 10, e0139652 (2015).

  20. 20.

    Garton, M. et al. Method to generate highly stable d-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc. Natl Acad. Sci. USA 115, 1505–1510 (2018).

  21. 21.

    Jackman, J. A., Goh, H. Z., Zhdanov, V. P., Knoll, W. & Cho, N.-J. Deciphering how pore formation causes strain-induced membrane lysis of lipid vesicles. J. Am. Chem. Soc. 138, 1406–1413 (2016).

  22. 22.

    Hatzakis, N. S. et al. How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat. Chem. Biol. 5, 835–841 (2009).

  23. 23.

    Sapparapu, G. et al. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540, 443–447 (2016).

  24. 24.

    Fernandez, E. et al. Human antibodies to the dengue virus E-dimer epitope have therapeutic activity against Zika virus infection. Nat. Immunol. 18, 1261–1269 (2017).

  25. 25.

    Yu, Y. et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat. Commun. 8, 15672 (2017).

  26. 26.

    Iwasaki, A. Immune regulation of antibody access to neuronal tissues. Trends Mol. Med. 18, 227–245 (2017).

  27. 27.

    Jurado, K. A. et al. Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat. Microbiol. 3, 141–147 (2018).

  28. 28.

    Olmo, I. G. et al. Zika virus promotes neuronal cell death in a non-cell autonomous manner by triggering the release of neurotoxic factors. Front. Immunol. 8, 1016 (2017).

  29. 29.

    Adibi, J. J., Marques, E. T. Jr, Cartus, A. & Beigi, R. H. Teratogenic effects of the Zika virus and the role of the placenta. Lancet 387, 1587–1590 (2016).

  30. 30.

    Anderson, M. R., Kashanchi, F. & Jacobson, S. Exosomes in viral disease. Neurotherapeutics 13, 535–546 (2016).

  31. 31.

    Cho, N.-J., Cho, S.-J., Cheong, K. H., Glenn, J. S. & Frank, C. W. Employing an amphipathic viral peptide to create a lipid bilayer on Au and TiO2. J. Am. Chem. Soc. 129, 10050–10051 (2007).

  32. 32.

    Jackman, J. A., Zhao, Z., Zhdanov, V. P., Frank, C. W. & Cho, N.-J. Vesicle adhesion and rupture on silicon oxide: influence of freeze–thaw pretreatment. Langmuir 30, 2152–2160 (2014).

  33. 33.

    Krauson, A. J. et al. Conformational fine-tuning of pore-forming peptide potency and selectivity. J. Am. Chem. Soc. 137, 16144–16152 (2015).

  34. 34.

    Cho, N.-J., Frank, C. W., Kasemo, B. & Höök, F. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 5, 1096–1106 (2010).

  35. 35.

    Kunding, A. H., Mortensen, M. W., Christensen, S. M. & Stamou, D. A fluorescence-based technique to construct size distributions from single-object measurements: application to the extrusion of lipid vesicles. Biophys. J. 95, 1176–1188 (2008).

  36. 36.

    Haddow, A. D. et al. Genetic characterization of Zika virus strains: geographic expansion of the Asian lineage. PLoS Negl. Trop. Dis. 6, e1477 (2012).

  37. 37.

    Foureaux, G. et al. Antiglaucomatous effects of the activation of intrinsic angiotensin-converting enzyme 2. Invest. Ophthalmol. Visual Sci. 54, 4296–4306 (2013).

  38. 38.

    Costa, V. V. et al. Subversion of early innate antiviral responses during antibody-dependent enhancement of Dengue virus infection induces severe disease in immunocompetent mice. Med. Microbiol. Immunol. 203, 231–250 (2014).

  39. 39.

    Amaral, D. C. et al. Intracerebral infection with dengue-3 virus induces meningoencephalitis and behavioral changes that precede lethality in mice. J. Neuroinflammation 8, 23 (2011).

  40. 40.

    Schmued, L. C., Stowers, C. C., Scallet, A. C. & Xu, L. Fluoro-Jade C results in ultra high resolution and contrast labeling of degenerating neurons. Brain Res. 1035, 24–31 (2005).

  41. 41.

    St John, A. L., Rathore, A. P. S., Raghavan, B., Ng, M.-L. & Abraham, S. N. Contributions of mast cells and vasoactive products, leukotrienes and chymase, to dengue virus-induced vascular leakage. eLife 2, e00481 (2013).

  42. 42.

    DiResta, G. et al. in Brain Edema VIII (eds Reulen, H. J., Baethmann, A., Fenstermacher, J., Marmarou, A. & Spatz, M.) 34–36 (Springer, Vienna, 1990).

  43. 43.

    Fenyk-Melody, J. E. et al. Comparison of the effects of perfusion in determining brain penetration (brain-to-plasma ratios) of small molecules in rats. Comp. Med. 54, 378–381 (2004).

Download references


This work was supported by the National Research Foundation of Singapore through an NRF Fellowship grant (NRF-NRFF2011-01), a Competitive Research Programme grant (NRF-CRP10-2012-07) and a Proof-of-Concept grant (NRF2015NRF-POC0001-19), the National Medical Research Council of Singapore (NMRC/CBRG/0005/2012) and the Centre for Precision Biology at Nanyang Technological University. This work also received support from the National Institute of Science and Technology in Dengue and Host-microorganism Interaction (INCT dengue), which is a programme sponsored by the Brazilian National Science Council (CNPq, Brazil) and the Minas Gerais Foundation for Science (FAPEMIG, Brazil). This work also received support from Financiadora de Estudos ePesquisa (FINEP 01.16.0050.00, Brazil), PP SUS: APQ-03744-17 and Comissao de Apoio a Pessoal de Ensino Superior (CAPES, Brazil). I. Marcal, T. Colina, G. dos Santos and F. Assis are acknowledged for technical assistance with experiments. The authors also acknowledge G. Batista Menezes and M. Mota Antunes for help with the acquisition of confocal microscopy images.

Author information

Author notes

  1. These authors contributed equally: Joshua A. Jackman, Vivian V. Costa


  1. School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore

    • Joshua A. Jackman
    • , Soohyun Park
    • , Jae Hyeon Park
    • , Abdul Rahim Ferhan
    • , Bo Kyeong Yoon
    •  & Nam-Joon Cho
  2. Immunopharmacology Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

    • Vivian V. Costa
    •  & Mauro M. Teixeira
  3. Center for Drug Research and Development of Pharmaceuticals, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

    • Vivian V. Costa
    •  & Mauro M. Teixeira
  4. Research Group in Arboviral Diseases, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

    • Vivian V. Costa
    • , Thaiane P. Moreira
    • , Jordana L. Bambirra
    •  & Victoria F. Queiroz
  5. Neurobiochemistry Lab, Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Minas Gerais, Brazil

    • Ana Luiza C. V. Real
    • , Pablo L. Cardozo
    • , Isabella G. Olmo
    •  & Fabiola M. Ribeiro
  6. Host-Interaction Microorganism Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

    • Thaiane P. Moreira
    • , Jordana L. Bambirra
    • , Victoria F. Queiroz
    •  & Danielle G. Souza
  7. Cardiac Biology Lab, Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil

    • Celso M. Queiroz-Junior
    •  & Giselle Foureaux
  8. Drug Quality and Registration Group, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium

    • Evelien Wynendaele
    •  & Bart De Spiegeleer
  9. School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore

    • Nam-Joon Cho


  1. Search for Joshua A. Jackman in:

  2. Search for Vivian V. Costa in:

  3. Search for Soohyun Park in:

  4. Search for Ana Luiza C. V. Real in:

  5. Search for Jae Hyeon Park in:

  6. Search for Pablo L. Cardozo in:

  7. Search for Abdul Rahim Ferhan in:

  8. Search for Isabella G. Olmo in:

  9. Search for Thaiane P. Moreira in:

  10. Search for Jordana L. Bambirra in:

  11. Search for Victoria F. Queiroz in:

  12. Search for Celso M. Queiroz-Junior in:

  13. Search for Giselle Foureaux in:

  14. Search for Danielle G. Souza in:

  15. Search for Fabiola M. Ribeiro in:

  16. Search for Bo Kyeong Yoon in:

  17. Search for Evelien Wynendaele in:

  18. Search for Bart De Spiegeleer in:

  19. Search for Mauro M. Teixeira in:

  20. Search for Nam-Joon Cho in:


J.A.J., V.V.C., M.M.T. and N.-J.C. planned the studies. J.A.J., V.V.C., S.P., A.L.C.V.R., P.L.C., J.H.P, I.O.G., T.P.M., J.L.B., V.F.Q., C.M.Q-J., G.F., D.G.S., F.M.R., A.R.F., B.K.Y. and E.W. conducted experiments. J.A.J., V.V.C., S.P., D.G.S., F.M.R., B.D.S., M.M.T. and N.-J.C. interpreted the results. J.A.J. and N.-J.C. wrote the first draft of the paper. M.M.T., F.M.R. and N.-J.C. obtained funding. All authors reviewed, edited and approved the paper.

Competing interests

N.-J.C. is a co-inventor on US patent no. 8,728,793. The other authors declare no competing interests.

Corresponding author

Correspondence to Nam-Joon Cho.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–15, Supplementary Tables 1–6

  2. Reporting Summary

About this article

Publication history