Article | Published:

Dual-function injectable angiogenic biomaterial for the repair of brain tissue following stroke

Nature Materialsvolume 17pages642651 (2018) | Download Citation


Stroke is the primary cause of disability due to the brain's limited ability to regenerate damaged tissue. After stroke, an increased inflammatory and immune response coupled with severely limited angiogenesis and neuronal growth results in a stroke cavity devoid of normal brain tissue. In the adult, therapeutic angiogenic materials have been used to repair ischaemic tissues through the formation of vascular networks. However, whether a therapeutic angiogenic material can regenerate brain tissue and promote neural repair is poorly understood. Here we show that the delivery of an engineered immune-modulating angiogenic biomaterial directly to the stroke cavity promotes tissue formation de novo, and results in axonal networks along thee generated blood vessels. This regenerated tissue produces functional recovery through the established axonal networks. Thus, this biomaterials approach generates a vascularized network of regenerated functional neuronal connections within previously dead tissue and lays the groundwork for the use of angiogenic materials to repair other neurologically diseased tissues.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Go, A. S. et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129, e28–e292 (2014).

  2. 2.

    Larrivee, B., Freitas, C., Suchting, S., Brunet, I. & Eichmann, A. Guidance of vascular development: lessons from the nervous system. Circ. Res. 104, 428–441 (2009).

  3. 3.

    Ohab, J. J., Fleming, S., Blesch, A. & Carmichael, S. T. A neurovascular niche for neurogenesis after stroke. J. Neurosci. 26, 13007–13016 (2006).

  4. 4.

    Lindvall, O. & Kokaia, Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harb. Perspect. Biol. 7, a019034 (2015).

  5. 5.

    Zhang, Z. G. et al. VEGF enhances angiogenesis and promotes blood–brain barrier leakage in the ischemic brain. J. Clin. Investig. 106, 829–838 (2000).

  6. 6.

    Ergul, A., Alhusban, A. & Fagan, S. C. Angiogenesis: a harmonized target for recovery after stroke. Stroke 43, 2270–2274 (2012).

  7. 7.

    Huang, L. et al. Glial scar formation occurs in the human brain after ischemic stroke. Int. J. Med. Sci. 11, 344–348 (2014).

  8. 8.

    Sofroniew, M. V. & Vinters, H. V. Astrocytes: biology and pathology. Acta Neuropathol. 119, 7–35 (2010).

  9. 9.

    Dirnagl, U., Iadecola, C. & Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22, 391–397 (1999).

  10. 10.

    Fitch, M. T., Doller, C., Combs, C. K., Landreth, G. E. & Silver, J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J. Neurosci. 19, 8182–8198 (1999).

  11. 11.

    Nih, L. R., Carmichael, S. T. & Segura, T. Hydrogels for brain repair after stroke: an emerging treatment option. Curr. Opin. Biotechnol. 40, 155–163 (2016).

  12. 12.

    Nih, L. R. et al. Engineered HA hydrogel for stem cell transplantation in the brain: biocompatibility data using a design of experiment approach. Data Brief. 10, 202–209 (2017).

  13. 13.

    Moshayedi, P. et al. Systematic optimization of an engineered hydrogel allows for selective control of human neural stem cell survival and differentiation after transplantation in the stroke brain. Biomaterials 105, 145–155 (2016).

  14. 14.

    Zhu, S., Nih, L. R., Carmichael, S. T., Lu, Y. & Segura, T. Enzyme-responsive delivery of multiple proteins with spatiotemporal control. Adv. Mater. 27, 3620–3625 (2015).

  15. 15.

    Carmichael, S. T. Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann. Neurol. 59, 735–742 (2006).

  16. 16.

    Chai, C. & Leong, K. W. Biomaterials approach to expand and direct differentiation of stem cells. Mol. Ther. 15, 467–480 (2007).

  17. 17.

    Orive, G., Anitua, E., Pedraz, J. L. & Emerich, D. F. Biomaterials for promoting brain protection, repair and regeneration. Nat. Rev. Neurosci. 10, 682–692 (2009).

  18. 18.

    Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S. & Yong, V. W. Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat. Rev. Neurosci. 14, 722–729 (2013).

  19. 19.

    Hou, S. et al. The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J. Neurosci. Methods 148, 60–70 (2005).

  20. 20.

    Cook, D. J. et al. Hydrogel-delivered brain-derived neurotrophic factor promotes tissue repair and recovery after stroke. J. Cereb. Blood Flow. Metab. 37, 1030–1045 (2017).

  21. 21.

    Fairbrother, W. J., Champe, M. A., Christinger, H. W., Keyt, B. A. & Starovasnik, M. A. Solution structure of the heparin-binding domain of vascular endothelial growth factor. Structure 6, 637–648 (1998).

  22. 22.

    Walter, H. L. et al. In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke. Neuroscience 292, 71–80 (2015).

  23. 23.

    Anderson, M. A. et al. Astrocyte scar formation aids central nervous system axon regeneration. Nature 532, 195–200 (2016).

  24. 24.

    Chen, Z. L. et al. Ablation of astrocytic laminin impairs vascular smooth muscle cell function and leads to hemorrhagic stroke. J. Cell Biol. 202, 381–395 (2013).

  25. 25.

    Ferrara, N., Gerber, H. P. & LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 9, 669–676 (2003).

  26. 26.

    Conway, A. et al. Multivalent ligands control stem cell behaviour in vitro and in vivo. Nat. Nanotechnol. 8, 831–838 (2013).

  27. 27.

    Lee, K. W. et al. Sustained release of vascular endothelial growth factor from calcium-induced alginate hydrogels reinforced by heparin and chitosan. Transplant. Proc. 36, 2464–2465 (2004).

  28. 28.

    Chung, C. & Burdick, J. A. Influence of three-dimensional hyaluronic acid microenvironments on mesenchymal stem cell chondrogenesis. Tissue Eng. Part A 15, 243–254 (2009).

  29. 29.

    Anderson, S. M. et al. VEGF internalization is not required for VEGFR-2 phosphorylation in bioengineered surfaces with covalently linked VEGF. Integr. Biol. Quant. Biosci. Nano Macro. 3, 887–896 (2011).

  30. 30.

    Lee, S., Jilani, S. M., Nikolova, G. V., Carpizo, D. & Iruela-Arispe, M. L. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169, 681–691 (2005).

  31. 31.

    Wei, L., Erinjeri, J. P., Rovainen, C. M. & Woolsey, T. A. Collateral growth and angiogenesis around cortical stroke. Stroke 32, 2179–2184 (2001).

  32. 32.

    Ma, Y., Zechariah, A., Qu, Y. & Hermann, D. M. Effects of vascular endothelial growth factor in ischemic stroke. J. Neurosci. Res. 90, 1873–1882 (2012).

  33. 33.

    Eklund, L. & Olsen, B. R. Tie receptors and their angiopoietin ligands are context-dependent regulators of vascular remodeling. Exp. Cell Res. 312, 630–641 (2006).

  34. 34.

    Bramfeldt, H., Sabra, G., Centis, V. & Vermette, P. Scaffold vascularization: a challenge for three-dimensional tissue engineering. Curr. Med. Chem. 17, 3944–3967 (2010).

  35. 35.

    Lorthois, S., Lauwers, F. & Cassot, F. Tortuosity and other vessel attributes for arterioles and venules of the human cerebral cortex. Microvasc. Res. 91, 99–109 (2014).

  36. 36.

    Arai, K., Jin, G., Navaratna, D. & Lo, E. H. Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J. 276, 4644–4652 (2009).

  37. 37.

    Adams, R. H. & Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb. Perspect. Biol. 2, a001875 (2010).

  38. 38.

    Barami, K. Relationship of neural stem cells with their vascular niche: implications in the malignant progression of gliomas. J. Clin. Neurosci. 15, 1193–1197 (2008).

  39. 39.

    Ruiz de Almodovar, C. et al. VEGF mediates commissural axon chemoattraction through its receptor Flk1. Neuron 70, 966–978 (2011).

  40. 40.

    Nih, L. R. et al. Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur. J. Neurosci. 35, 1208–1217 (2012).

  41. 41.

    Allred, R. P. et al. The vermicelli handling test: a simple quantitative measure of dexterous forepaw function in rats. J. Neurosci. Methods 170, 229–244 (2008).

  42. 42.

    Li, S. et al. GDF10 is a signal for axonal sprouting and functional recovery after stroke. Nat. Neurosci. 18, 1737–1745 (2015).

  43. 43.

    Smith, K. S., Bucci, D. J., Luikart, B. W. & Mahler, S. V. DREADDS: use and application in behavioral neuroscience. Behav. Neurosci. 130, 137–155 (2016).

  44. 44.

    Croll, S. D. et al. VEGF-mediated inflammation precedes angiogenesis in adult brain. Exp. Neurol. 187, 388–402 (2004).

  45. 45.

    Busse, C. E., Krotkova, A. & Eichmann, K. The TCRβ enhancer is dispensable for the expression of rearranged TCRβ genes in thymic DN2/DN3 populations but not at later stages. J. Immunol. 175, 3067–3074 (2005).

  46. 46.

    Wan, M. X., Zhang, X. W., Torkvist, L. & Thorlacius, H. Low molecular weight heparin inhibits tumor necrosis factor-α-induced leukocyte rolling. Inflamm. Res. 50, 581–584 (2001).

  47. 47.

    Handel, T. M., Johnson, Z., Crown, S. E., Lau, E. K. & Proudfoot, A. E. Regulation of protein function by glycosaminoglycans—as exemplified by chemokines. Annu. Rev. Biochem. 74, 385–410 (2005).

  48. 48.

    Lohmann, et al. Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice. Sci. Transl. Med. 9, aai9044 (2017).

  49. 49.

    Anderson, S. M., Siegman, S. N. & Segura, T. The effect of vascular endothelial growth factor (VEGF) presentation within fibrin matrices on endothelial cell branching. Biomaterials 32, 7432–7443 (2011).

  50. 50.

    Anderson, S. M., Chen, T. T., Iruela-Arispe, M. L. & Segura, T. The phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2) by engineered surfaces with electrostatically or covalently immobilized VEGF. Biomaterials 30, 4618–4628 (2009).

  51. 51.

    Lei, Y.,Gojgini, S. & Segura, T. The spreading, migration and proliferation of mouse mesenchymal stem cells cultured inside hyaluronic acid hydrogels. Biomaterials 32, 39–47 (2011).

  52. 52.

    Lam, J. & Segura, T. The modulation of MSC integrin expression by RGD presentation. Biomaterials 34, 3938–3947 (2013).

  53. 53.

    Liu, S., Zhen, G., Meloni, B. P., Campbell, K. & Winn, H. R. Rodent stroke model guidelines for preclinical stroke trials. J. Exp. Stroke Transl. Med. 2, 2–27 (2009).

  54. 54.

    Fluri, F., Schuhmann, M. K. & Kleinschnitz, C. Animal models of ischemic stroke and their application in clinical research. Drug Des. Dev. Ther. 9, 3445–3454 (2015).

  55. 55.

    Carmichael, S. T. Rodent models of focal stroke: size, mechanism, and purpose. NeuroRx 2, 396–409 (2005).

  56. 56.

    Carmichael, S. T. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann. Neurol. 79, 895–906 (2016).

  57. 57.

    Carmichael, S. T. The 3 Rs of stroke biology: radial, relayed, and regenerative. Neurotherapeutics 13, 348–359 (2016).

  58. 58.

    Clarkson, A. N., Huang, B. S., Macisaac, S. E., Mody, I. & Carmichael, S. T. Reducing excessive GABA-mediated tonic inhibition promotes functional recovery after stroke. Nature 468, 305–309 (2010).

  59. 59.

    Scott, A. K. et al. Magnetic resonance elastography of the brain. NeuroImage 39, 231–237 (2008).

  60. 60.

    Salhia, B. et al. Expression of vascular endothelial growth factor by reactive astrocytes and associated neoangiogenesis. Brain Res 883, 87–97 (2000).

  61. 61.

    Tsai, P. T. et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J. Neurosci. 26, 1269–1274 (2006).

  62. 62.

    Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).

  63. 63.

    Fukui, S., Fazzina, G., Amorini, A. M., Dunbar, J. G. & Marmarou, A. Differential effects of atrial natriuretic peptide on the brain water and sodium after experimental cortical contusion in the rat. J. Cereb. Blood Flow. Metab. 23, 1212–1218 (2003).

  64. 64.

    Rogan, S. C. & Roth, B. L. Remote control of neuronal signaling. Pharmacol. Rev. 63, 291–315 (2011).

  65. 65.

    Schallert, T., Fleming, S. M., Leasure, J. L., Tillerson, J. L. & Bland, S. T. CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39, 777–787 (2000).

Download references


This work was supported through the US National Institutes of Health NIH RO1NS079691. The Bioplex experiment was done at the UCLA IMT core, Center for Systems Biomedicine, which is supported by CURE/P30 DK041301.

Author information


  1. Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA

    • Lina R. Nih
    • , Shiva Gojgini
    •  & Tatiana Segura
  2. Department of Neurology David Geffen School of Medicine, University of California, Los Angeles, USA, CA

    • Lina R. Nih
    •  & S. Thomas Carmichael
  3. Department of Biomedical Engineering, Neurology, Dermatology, Duke University, Durham, NC, USA

    • Tatiana Segura


  1. Search for Lina R. Nih in:

  2. Search for Shiva Gojgini in:

  3. Search for S. Thomas Carmichael in:

  4. Search for Tatiana Segura in:


L.R.N. was responsible for the conceptual design of the in vivo study, troubleshooting, experimental execution, interpretation of in vivo data, manuscript writing and figure creation. S.G. performed in vitro studies and interpretation, sample preparation and characterization. T.S. and S.T.C. contributed equally to overseeing experimental design and interpretation.

Competing interests

The authors claim no competing interests.

Corresponding authors

Correspondence to S. Thomas Carmichael or Tatiana Segura.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–12, Supplementary Notes 1–2

  2. Reporting Summary

About this article

Publication history




Issue Date


Further reading