Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect


The possibility of utilizing the rich spin-dependent properties of graphene has attracted much attention in the pursuit of spintronics advances. The promise of high-speed and low-energy-consumption devices motivates the search for layered structures that stabilize chiral spin textures such as topologically protected skyrmions. Here we demonstrate that chiral spin textures are induced at graphene/ferromagnetic metal interfaces. Graphene is a weak spin–orbit coupling material and is generally not expected to induce a sufficient Dzyaloshinskii–Moriya interaction to affect magnetic chirality. We demonstrate that indeed graphene does induce a type of Dzyaloshinskii–Moriya interaction due to the Rashba effect. First-principles calculations and experiments using spin-polarized electron microscopy show that this graphene-induced Dzyaloshinskii–Moriya interaction can have a similar magnitude to that at interfaces with heavy metals. This work paves a path towards two-dimensional-material-based spin–orbitronics.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal and spin configurations of graphene-coated Co and Ni films used for DMI calculations.
Fig. 2: Anatomy of DMI for graphene/Co and graphene/Ni bilayers.
Fig. 3: Experimental measurement of DMI in graphene/Co by means of SPLEEM.
Fig. 4: DMI and PMA for multilayers of graphene/[Co/Ni/graphene] n as a function of the junction number n.


  1. 1.

    Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  Google Scholar 

  2. 2.

    Han, W., Kawakami, R. K., Gmitra, M. & Fabian, J. Graphene spintronics. Nat. Nanotech. 9, 794–807 (2014).

    Article  Google Scholar 

  3. 3.

    Roche, S. et al. Graphene spintronics: the European Flagship perspective. 2D Mater. 2, 030202 (2015).

    Article  Google Scholar 

  4. 4.

    Karpan, V. M. et al. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 99, 176602 (2007).

    Article  Google Scholar 

  5. 5.

    Cobas, E., Friedman, A. L., van't Erve, O. M. J., Robinson, J. T. & Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 12, 3000–3004 (2012).

    Article  Google Scholar 

  6. 6.

    Bodepudi, S. C., Singh, A. P. & Pramanik, S. Giant current-perpendicular-to-plane magnetoresistance in multilayer graphene as grown on nickel. Nano Lett. 14, 2233–2241 (2014).

    Article  Google Scholar 

  7. 7.

    Han, W. et al. Tunneling spin injection into single layer graphene. Phys. Rev. Lett. 105, 167202 (2010).

    Article  Google Scholar 

  8. 8.

    Dlubak, B. et al. Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012).

    Article  Google Scholar 

  9. 9.

    Dedkov, Yu. S., Fonin, M., Rüdiger, U. & Laubschat, C. Rashba effect in the graphene/Ni(111) system. Phys. Rev. Lett. 100, 107602 (2008).

    Article  Google Scholar 

  10. 10.

    Liu, M.-H., Bundesmann, J. & Richter, K. Spin-dependent Klein tunneling in graphene: Role of Rashba spin–orbit coupling. Phys. Rev. B 85, 085406 (2012).

    Article  Google Scholar 

  11. 11.

    Kane, C. L. & Mele, E. J. Quantum spin Hall effect in graphene. Phys. Rev. Lett. 95, 226801 (2005).

    Article  Google Scholar 

  12. 12.

    Vo-Van, C. et al. Ultrathin epitaxial cobalt films on graphene for spintronic investigations and applications. New J. Phys. 12, 103040 (2010).

    Article  Google Scholar 

  13. 13.

    Rougemaille, N. et al. Perpendicular magnetic anisotropy of cobalt films intercalated under graphene. Appl. Phys. Lett. 101, 142403 (2012).

    Article  Google Scholar 

  14. 14.

    Yang, H. X. et al. Anatomy and giant enhancement of the perpendicular magnetic anisotropy of cobalt–graphene heterostructures. Nano Lett. 16, 145–151 (2015).

    Article  Google Scholar 

  15. 15.

    Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nat. Mater. 10, 419–423 (2011).

    Article  Google Scholar 

  16. 16.

    Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  Google Scholar 

  17. 17.

    Ryu, K.-S., Thomas, L., Yang, S.-H. & Parkin, S. Chiral spin torque at magnetic domain walls. Nat. Nanotech. 8, 527–533 (2013).

    Article  Google Scholar 

  18. 18.

    Haazen, P. P. J. et al. Domain wall depinning governed by the spin Hall effect. Nat. Mater. 12, 299–303 (2013).

    Article  Google Scholar 

  19. 19.

    Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648–1651 (2010).

    Article  Google Scholar 

  20. 20.

    Romming, N. et al. Writing and deleting single magnetic skyrmions. Science 341, 636–639 (2013).

    Article  Google Scholar 

  21. 21.

    Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).

    Article  Google Scholar 

  22. 22.

    Iwasaki, J., Mochizuki, M. & Nagaosa, N. Current-induced skyrmions in constricted geometries. Nat. Nanotech. 8, 742–747 (2013).

    Article  Google Scholar 

  23. 23.

    Parkin, S. S. P., Hayasi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 197202 (2009).

    Google Scholar 

  24. 24.

    Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotech. 8, 152–156 (2013).

    Article  Google Scholar 

  25. 25.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotech. 8, 899–911 (2013).

    Article  Google Scholar 

  26. 26.

    Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  Google Scholar 

  27. 27.

    Dzialoshinskii, I. E. Thermodynamic theory of ‘‘weak’’ ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  28. 28.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    Article  Google Scholar 

  29. 29.

    Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    Article  Google Scholar 

  30. 30.

    Sampaio, J., Cros, V., Rohart, S., Thiaville, A. & Fert, A. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. Nat. Nanotech. 8, 839–844 (2013).

    Article  Google Scholar 

  31. 31.

    Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    Article  Google Scholar 

  32. 32.

    Chen, G. et al. Room temperature skyrmion ground state stabilized through interlayer exchange coupling. Appl. Phys. Lett. 106, 242404 (2015).

    Article  Google Scholar 

  33. 33.

    Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructure. Nat. Nanotech. 11, 449–454 (2016).

    Article  Google Scholar 

  34. 34.

    Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotech. 11, 444–448 (2016).

    Article  Google Scholar 

  35. 35.

    Thiaville, A., Rohart, S., Jué, É., Cros, V. & Fert, A. Dynamics of Dzyaloshinskii domain walls in ultrathin magnetic films. Europhys. Lett. 100, 57002 (2012).

    Article  Google Scholar 

  36. 36.

    Chen, G. et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys. Rev. Lett. 110, 177204 (2013).

    Article  Google Scholar 

  37. 37.

    Fert, A. & Levy, P. M. Role of anisotropic exchange interactions in determining the properties of spin-glasses. Phys. Rev. Lett. 44, 1538–1541 (1980).

    Article  Google Scholar 

  38. 38.

    Yang, H., Thiaville, A., Rohart, S., Fert, A. & Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 115, 267210 (2015).

    Article  Google Scholar 

  39. 39.

    Dieny, B. & Chshiev, M. Perpendicular magnetic anisotropy at transition metal/oxide interfaces and applications. Rev. Mod. Phys. 89, 025008 (2017).

    Article  Google Scholar 

  40. 40.

    Yang, H. X., Boulle, O., Cros, V., Fert, A. & Chshiev, M. Controlling Dzyaloshinskii–Moriya interaction via chirality dependent layer stacking, insulator capping and electric field. Preprint at (2016).

  41. 41.

    Kundu, A. & Zhang, S. Dzyaloshinskii–Moriya interaction mediated by spin-polarized band with Rashba spin–orbit coupling. Phys. Rev. B 92, 094434 (2015).

    Article  Google Scholar 

  42. 42.

    Imamura, H., Bruno, P. & Utsumi, Y. Twisted exchange interaction between localized spins embedded in a one- or two-dimensional electron gas with Rashba spin–orbit coupling. Phys. Rev. B 69, 121303(R) (2015).

    Article  Google Scholar 

  43. 43.

    Kim, K.-W., Lee, H.-W., Lee, K.-J. & Stiles, M. D. Chirality from interfacial spin–orbit coupling effects in magnetic bilayers. Phys. Rev. Lett. 111, 216601 (2013).

    Article  Google Scholar 

  44. 44.

    Bode, S., Starke, K. & Kaindl, G. Spin-dependent surface band structure of hcp Co(100). Phys. Rev. B 60, 2946 (1999).

    Article  Google Scholar 

  45. 45.

    Eyrich, C. et al. Effects of substitution on the exchange stiffness and magnetization of Co films. Phys. Rev. B 90, 235408 (2014).

    Article  Google Scholar 

  46. 46.

    Park, J.-H. et al. Orbital chirality and Rashba interaction in magnetic bands. Phys. Rev. B 87, 041301(R) (2013).

    Article  Google Scholar 

  47. 47.

    Lee-Hone, N. R. et al. Roughness-induced domain structure in perpendicular Co/Ni multilayers. J. Magn. Magn. Mater. 441, 283–289 (2017).

    Article  Google Scholar 

  48. 48.

    Chen, G. et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat. Commun. 4, 2671 (2013).

    Article  Google Scholar 

  49. 49.

    Chen, G. et al. Unlocking Bloch-type chirality in ultrathin magnets through uniaxial strain. Nat. Commun. 6, 6598 (2015).

    Article  Google Scholar 

  50. 50.

    El Gabaly, F. et al. Imaging spin-reorientation transitions in consecutive atomic Co layers on Ru (0001). Phys. Rev. Lett. 96, 147202 (2006).

    Article  Google Scholar 

  51. 51.

    Meckler, S. et al. Real-space observation of a right-rotating inhomogeneous cycloidal spin spiral by spin-polarized scanning tunneling microscopy in a triple axes vector magnet. Phys. Rev. Lett. 103, 157201 (2009).

    Article  Google Scholar 

  52. 52.

    Chen, G. et al. Ternary superlattice boosting interface-stabilized magnetic chirality. Appl. Phys. Lett. 106, 062402 (2015).

    Article  Google Scholar 

  53. 53.

    Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  Google Scholar 

  54. 54.

    Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat. Mater. 6, 183–191 (2007).

    Article  Google Scholar 

  55. 55.

    Coraux, J. et al. Air-protected epitaxial graphene/ferromagnet hybrids prepared by chemical vapor deposition and intercalation. J. Phys. Chem. Lett. 3, 2059–2063 (2012).

    Article  Google Scholar 

  56. 56.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  57. 57.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  58. 58.

    Xiang, H. J., Kan, E. J., Wei, S.-H., Whangbo, M.-H. & Gong, X. G. Predicting the spin-lattice order of frustrated systems from first principles. Phys. Rev. B 84, 224429 (2011).

    Article  Google Scholar 

  59. 59.

    Bihlmayer, G., Kroteev, Y. M., Echenique, P. M., Chulkov, E. V. & Blugel, S. The Rashba-effect at metallic surfaces. Surf. Sci. 600, 3888 (2006).

    Article  Google Scholar 

  60. 60.

    Sutter, P. W., Flege, J.-I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 7, 406–411 (2008).

    Article  Google Scholar 

  61. 61.

    Huang, L. et al. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 99, 163107 (2011).

    Article  Google Scholar 

  62. 62.

    El Gabaly, F. et al. Structure and morphology of ultrathin Co/Ru(0001) films. New J. Phys. 9, 80 (2007).

    Article  Google Scholar 

  63. 63.

    Liao et al. Intercalation of cobalt underneath a monolayer of graphene on Ru(0001). Surf. Rev. Lett. 19, 1250041 (2012).

    Article  Google Scholar 

  64. 64.

    Hubert, A. & Schäfer, R. Magnetic Domains (Springer, Berlin, 1998).

  65. 65.

    Chen, G. et al. Out-of-plane chiral domain wall spin-structures in ultrathin in-plane magnets. Nat. Commun. 8, 15302 (2017).

    Article  Google Scholar 

  66. 66.

    Blundell, S. J. Magnetism in Condensed Matter (Oxford Univ. Press, Oxford, 2001).

    Google Scholar 

Download references


This work was supported by the European Union's Horizon 2020 Research and Innovation Programme under grant agreement no. 696656 (GRAPHENE FLAGSHIP), the ANR ULTRASKY, SOSPIN. Ab initio calculations used the resources of GENCI-CINES with grant no. C2016097605. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. Work at UCD was supported by the UC Office of the President Multicampus Research Programs and Initiatives MRP-17-454963 (G.C.) and NSF DMR-1610060 (K.L.). A.A.C.C., W.A.A.M. and E.A.S. acknowledge the support of the Brazilian agencies CAPES, CNPq and FAPEMIG. H.Y. would like also to acknowledge the 1000 Talents Program for Young Scientists of China and Ningbo 3315 Program. We thank V. Cros, O. Boulle, G. Gaudin, I. M. Miron, T. P. Ma and A. Thiaville for fruitful discussions and comments.

Author information




H.Y. and G.C. conceived the study. H.Y and S.A.N. performed the ab initio calculations with the help of M.C. H.Y., M.C., S.A.N. and A.F. analysed and interpreted the ab initio results. G.C. and A.A.C.C. carried out the SPLEEM measurements. A.K.S. supervised the SPLEEM facility. G.C., A.A.C.C., A.T.N., K.L. and A.K.S analysed the SPLEEM results. G.C. derived the DMI strength from experimental data. G.C., A.A.C.C., A.T.N., K.L., A.K.S., E.A.S. and W.A.A.M. interpreted and discussed the experimental result. A.A.C.C., E.A.S. and W.A.A.M. performed XPS measurements. H.Y and G.C. prepared the manuscript with help from A.A.C.C., A.K.S., S.A.N. and M.C. All authors commented on the manuscript.

Corresponding authors

Correspondence to Hongxin Yang or Gong Chen or Andreas K. Schmid or Mairbek Chshiev.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures 1–6 and Supplementary note

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, G., Cotta, A.A.C. et al. Significant Dzyaloshinskii–Moriya interaction at graphene–ferromagnet interfaces due to the Rashba effect. Nature Mater 17, 605–609 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing