Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electrostrain in excess of 1% in polycrystalline piezoelectrics


Piezoelectric actuators transform electrical energy into mechanical energy, and because of their compactness, quick response time and accurate displacement, they are sought after in many applications. Polycrystalline piezoelectric ceramics are technologically more appealing than single crystals due to their simpler and less expensive processing, but have yet to display electrostrain values that exceed 1%. Here we report a material design strategy wherein the efficient switching of ferroelectric–ferroelastic domains by an electric field is exploited to achieve a high electrostrain value of 1.3% in a pseudo-ternary ferroelectric alloy system, BiFeO3–PbTiO3–LaFeO3. Detailed structural investigations reveal that this electrostrain is associated with a combination of several factors: a large spontaneous lattice strain of the piezoelectric phase, domain miniaturization, a low-symmetry ferroelectric phase and a very large reverse switching of the non-180° domains. This insight for the design of a new class of polycrystalline piezoceramics with high electrostrains may be useful to develop alternatives to costly single-crystal actuators.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure–property correlation.
Fig. 2: Structural study of poled and unpoled BF-PT45:La(y = 0.30).
Fig. 3: HAADFSTEM images of poled and unpoled BF-PT45:La(y = 0.30).
Fig. 4: Domain switching with an electric field.
Fig. 5: Comparison with PT-BNZ.
Fig. 6: Structure–property correlation in 0.60Bi1–yLayFeO3–0.40PbTiO3.


  1. 1.

    Uchino, K. Piezoelectric Actuators and Ultrasonic Motors (Kluwer Academic, Boston, 1996).

    Google Scholar 

  2. 2.

    Park, S.-E. & Shrout, T. R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82, 1804–1811 (1997).

    CAS  Article  Google Scholar 

  3. 3.

    Du, X., Belegundu, U. & Uchino, K. Crystal orientation dependence of piezoelectric properties in lead zirconate titanate: theoretical expectation for thin films. Jpn J. Appl. Phys. 36, 5580–5587 (1997).

    CAS  Article  Google Scholar 

  4. 4.

    Hall, D. A., Steuwer, A., Cherdhirunkorn, B., Mori, T. & Withers, P. J. Analysis of elastic strain and crystallographic texture in poled rhombohedral PZT ceramics. Acta Mater. 54, 3075–3083 (2006).

    CAS  Article  Google Scholar 

  5. 5.

    Li, J. Y., Rogan, R. C., Üstündag, E. & Bhattacharya, K. Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776–781 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    Liu, X. & Tan, X. Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28, 574–578 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Damjanovic, D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61, 1267–1324 (1998).

    CAS  Article  Google Scholar 

  8. 8.

    Jones, J. L., Hoffman, M., Daniels, J. E. & Studer, A. J. Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89, 092901 (2006).

    Article  Google Scholar 

  9. 9.

    Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    CAS  Article  Google Scholar 

  10. 10.

    Wada, S., Park, S.-E., Cross, L. E. & Shrout, T. R. Domain configuration and ferroelectric related properties of relaxor based single crystals. J. Kor. Phys. Soc. 32, S1290–S1293 (1998).

    CAS  Google Scholar 

  11. 11.

    Ren, X. Large electric-field-induced strain in ferroelectric crystals by point defect mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004).

    CAS  Article  Google Scholar 

  12. 12.

    Xu, G., Zhong, Z., Bing, Y., Ye, Z.-G. & Shirane, G. Electric-field-induced redistribution of polar nano-regions in a relaxor ferroelectric. Nat. Mater. 5, 134–138 (2006).

    CAS  Article  Google Scholar 

  13. 13.

    Fedulov, S. A., Ladyzhinskii, P. B., Pyatigorskaya, I. L. & Venevetsev, Yu. N. Complete phase diagram of the PbTiO3-BiFeO3 system. Sov. Phys. Solid State 6, 375–378 (1964).

    Google Scholar 

  14. 14.

    Comyn, T. P. et al. Phase-specific magnetic ordering in BiFeO3−PbTiO3. Appl. Phys. Lett. 93, 232901 (2008).

    Article  Google Scholar 

  15. 15.

    Dai, X., Xu, Z. & Viehland, D. J. Normal to relaxor ferroelectric transformations in lanthanum-modified tetragonal structured lead zirconate titanate ceramics. J. Appl. Phys. 79, 1021–1026 (1996).

    CAS  Article  Google Scholar 

  16. 16.

    Howard, C. J. & Stokes, H. T. Group-theoretical analysis of octahedral tilting in perovskites. Acta Cryst. B54, 782–789 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Stokes, H. T., Kisi, E. H., Hatch, D. M. & Howard, C. J. Group-theoretical analysis of octahedral tilting in ferroelectric perovskites. Acta Cryst. B58, 934–938 (2002).

    CAS  Article  Google Scholar 

  18. 18.

    Grinberg, I., Cooper, V. R. & Rappe, A. M. Relationship between local structure and phase transitions of a disordered solid solution. Nature 419, 909–911 (2002).

    CAS  Article  Google Scholar 

  19. 19.

    Westphal, V., Kleeman, W. & Glinchuk, M. D. Diffuse phase transitions and random-field-induced domain states of the relaxor ferroelectric PbMg1/3Nb2/3O3. Phys. Rev. Lett. 68, 847–850 (1992).

    CAS  Article  Google Scholar 

  20. 20.

    Rao, B. N. et al. Local structural disorder and its influence on the average global structure and polar properties in Na0.5Ba0.5TiO3. Phys. Rev. B 88, 224103 (2013).

    Article  Google Scholar 

  21. 21.

    Usher, T.-M. et al. Local and average structures of BaTiO3–Bi(Zn1/2Ti1/2)O3. J. Appl. Phys. 120, 184102 (2016).

    Article  Google Scholar 

  22. 22.

    Ihlefeld, J. F. et al. Scaling effects in perovskite ferroelectrics: fundamental limits and structure–property relations. J. Am. Ceram. Soc. 99, 2537–2557 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Pramanick, A., Damjanovic, D., Daniels, J. E., Nino, J. C. & Jones, J. L. Origins of electro-mechanical coupling in polycrystalline ferroelectrics during subcoercive electrical Loading. J. Am. Ceram. Soc. 94, 293–309 (2011).

    CAS  Article  Google Scholar 

  24. 24.

    Rong, Y. et al. Large piezoelectric response and polarization in relaxor ferroelectric PbTiO3–Bi(Ni1/2Zr1/2)O3. J. Am. Ceram. Soc. 96, 1035–1038 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Cheng, J.-R., Eitel, R. & Cross, L. E. Lanthanum-modified (1–x)(Bi0.8La0.2)(Ga0.05Fe0.95)O3.xPbTiO3 crystalline solutions: novel morphotropic phase-boundary lead-reduced piezoelectrics. J. Am. Ceram. Soc. 86, 2111–2115 (2003).

    CAS  Article  Google Scholar 

  26. 26.

    Leist, T., Granzow, T., Jo, W. & Rödel, J. Effect of tetragonal distortion on ferroelectric domain switching: a case study on La doped BiFeO3-PbTiO3 ceramics. J. Appl. Phys. 108, 014103 (2010).

    Article  Google Scholar 

  27. 27.

    Carvajal, J. R. FULLPROF. A Rietveld refinement and pattern matching analysis program (Laboratories Leon Brillouin (CEA-CNRS), France, 2000).

    Google Scholar 

Download references


R.R. acknowledges the Special Grant provided by IISc Bangalore in 2013 to set-up the facility to carry out high-resolution XRPD in situ with an electric field (Grant. no. AD/PG/RR/MET-08). R.R. also acknowledges the Nano mission Program of the Department of Science and Technology (Grant no. SR/NM/NS-1010/2015 (G)), the Council of Scientific and Industrial Research (Grant no. 03 (1347)/16/EMR-II) and the Science and Engineering Research Board (SERB) of the Ministry of Science and Technology (Grant no. EMR/2016/001457), Government of India for financial support. R.P. acknowledges SERB for the award of a National Post Doctoral Fellowship. P.N. and B.D. acknowledge a public grant overseen by the French National Research Agency (ANR) as part of the ‘Investissements d’Avenir’ programme (Grant no. ANR-10-LABX-0035, Labex NanoSaclay) and the MATMECA consortium (contract no. ANR-10-EQPX-37). R.R. thanks X. Ren for helpful discussion.

Author information




R.R. conceived the work, participated in planning the experiments and in the interpretations of the data. B.N., J.S.M. and R.P. prepared the specimens and carried out the characterization and data analysis. P.N. and B.D. carried out the HRTEM experiments and analysis. K.Y. did the TEM sample preparation and electron diffraction. A.S. provided the NPD data.

Corresponding author

Correspondence to Rajeev Ranjan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–11, Supplementary Tables 1–4, Supplementary References 1–7

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Narayan, B., Malhotra, J.S., Pandey, R. et al. Electrostrain in excess of 1% in polycrystalline piezoelectrics. Nature Mater 17, 427–431 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing