Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response

Abstract

Piezoelectrics interconvert mechanical energy and electric charge and are widely used in actuators and sensors. The best performing materials are ferroelectrics at a morphotropic phase boundary, where several phases coexist. Switching between these phases by electric field produces a large electromechanical response. In ferroelectric BiFeO3, strain can create a morphotropic-phase-boundary-like phase mixture and thus generate large electric-field-dependent strains. However, this enhanced response occurs at localized, randomly positioned regions of the film. Here, we use epitaxial strain and orientation engineering in tandem—anisotropic epitaxy—to craft a low-symmetry phase of BiFeO3 that acts as a structural bridge between the rhombohedral-like and tetragonal-like polymorphs. Interferometric displacement sensor measurements reveal that this phase has an enhanced piezoelectric coefficient of ×2.4 compared with typical rhombohedral-like BiFeO3. Band-excitation frequency response measurements and first-principles calculations provide evidence that this phase undergoes a transition to the tetragonal-like polymorph under electric field, generating an enhanced piezoelectric response throughout the film and associated field-induced reversible strains. These results offer a route to engineer thin-film piezoelectrics with improved functionalities, with broader perspectives for other functional oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of anisotropic epitaxy to obtain exotic ferroelectric phases.
Fig. 2: STEM and PFM characterization of a tri-BFO film.
Fig. 3: IDS and BEPS measurements.
Fig. 4: DFT predictions of properties as a function of applied electric field along [310]pc ([310]pc ≈ [013]f).

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.

References

  1. Fu, H. & Cohen, R. E. Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403, 281–283 (2000).

    Article  CAS  Google Scholar 

  2. Zhang, S. et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers – a review. Prog. Mater. Sci. 68, 1–66 (2015).

    Article  CAS  Google Scholar 

  3. Damjanovic, D. Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J. Am. Ceram. Soc. 88, 2663–2676 (2005).

    Article  CAS  Google Scholar 

  4. Ahart, M. et al. Origin of morphotropic phase boundaries in ferroelectrics. Nature 451, 545–548 (2008).

    Article  CAS  Google Scholar 

  5. Cross, E. Lead-free at last. Nature 432, 24–25 (2004).

    Article  CAS  Google Scholar 

  6. Jaffe, B. Piezoelectric Ceramics (Academic Press, 1971).

  7. Li, F. et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7, 13807 (2016).

    Article  CAS  Google Scholar 

  8. Liu, W. & Ren, X. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009).

    Article  Google Scholar 

  9. Noheda, B. et al. Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn1/3Nb2/3O3-8% PbTiO3. Phys. Rev. Lett. 86, 3891–3894 (2001).

    Article  CAS  Google Scholar 

  10. Saito, Y. et al. Lead-free piezoceramics. Nature 432, 84–87 (2004).

    Article  CAS  Google Scholar 

  11. Schönau, K. A. et al. Nanodomain structure of Pb[Zr1−xTix]O3 at its morphotropic phase boundary: investigations from local to average structure. Phys. Rev. B 75, 184117 (2007).

    Article  Google Scholar 

  12. Zeches, R. J. et al. A strain-driven morphotropic phase boundary in BiFeO3. Science 326, 977–980 (2009).

    Article  CAS  Google Scholar 

  13. Jin, Y. M., Wang, Y. U., Khachaturyan, A. G., Li, J. F. & Viehland, D. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91, 197601 (2003).

    Article  CAS  Google Scholar 

  14. Noheda, B. et al. A monoclinic ferroelectric phase in the Pb(Zr1–xTix)O3 solid solution. Appl. Phys. Lett. 74, 2059–2061 (1999).

    Article  CAS  Google Scholar 

  15. Sando, D., Xu, B., Bellaiche, L. & Nagarajan, V. A multiferroic on the brink: uncovering the nuances of strain-induced transitions in BiFeO3. Appl. Phys. Rev. 3, 011106 (2016).

    Article  Google Scholar 

  16. Sando, D. et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016).

    Article  CAS  Google Scholar 

  17. Sando, D. et al. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12, 641–646 (2013).

    Article  CAS  Google Scholar 

  18. Béa, H. et al. Evidence for room-temperature multiferroicity in a compound with a giant axial ratio. Phys. Rev. Lett. 102, 217603 (2009).

    Article  Google Scholar 

  19. Damodaran, A. R., Lee, S., Karthik, J., MacLaren, S. & Martin, L. W. Temperature and thickness evolution and epitaxial breakdown in highly strained BiFeO3 thin films. Phys. Rev. B 85, 024113 (2012).

    Article  Google Scholar 

  20. Noheda, B. et al. Stability of the monoclinic phase in the ferroelectric perovskite PbZr1–xTixO3. Phys. Rev. B 63, 014103 (2000).

    Article  Google Scholar 

  21. Heo, Y., Jang, B.-K., Kim, S. J., Yang, C.-H. & Seidel, J. Nanoscale mechanical softening of morphotropic BiFeO3. Adv. Mater. 26, 7568–7572 (2014).

    Article  CAS  Google Scholar 

  22. Chen, Z. et al. Coexistence of ferroelectric triclinic phases in highly strained BiFeO3 films. Phys. Rev. B 84, 094116 (2011).

    Article  Google Scholar 

  23. Bellaiche, L., García, A. & Vanderbilt, D. Finite-temperature properties of PbZr1–xTixO3 alloys from first principles. Phys. Rev. Lett. 84, 5427–5430 (2000).

    Article  CAS  Google Scholar 

  24. Lisenkov, S., Rahmedov, D. & Bellaiche, L. Electric-field-induced paths in multiferroic BiFeO3 from atomistic simulations. Phys. Rev. Lett. 103, 047204 (2009).

    Article  CAS  Google Scholar 

  25. Davis, M., Budimir, M., Damjanovic, D. & Setter, N. Rotator and extender ferroelectrics: importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics. J. Appl. Phys. 101, 054112 (2007).

    Article  Google Scholar 

  26. Damodaran, A. R. et al. Nanoscale structure and mechanism for enhanced electromechanical response of highly strained BiFeO3 thin films. Adv. Mater. 23, 3170–3175 (2011).

    Article  CAS  Google Scholar 

  27. Zhang, J. X. et al. Large field-induced strains in a lead-free piezoelectric material. Nat. Nanotechnol. 6, 98–102 (2011).

    Article  CAS  Google Scholar 

  28. Zhang, J. et al. A nanoscale shape memory oxide. Nat. Commun. 4, 2768 (2013).

    Article  Google Scholar 

  29. Li, F. et al. Giant piezoelectricity of Sm-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals. Science 364, 264–268 (2019).

    Article  CAS  Google Scholar 

  30. Ren, X. Large electric-field-induced strain in ferroelectric crystals by point-defect-mediated reversible domain switching. Nat. Mater. 3, 91–94 (2004).

    Article  CAS  Google Scholar 

  31. Sinsheimer, J. et al. Engineering polarization rotation in a ferroelectric superlattice. Phys. Rev. Lett. 109, 167601 (2012).

    Article  CAS  Google Scholar 

  32. Schlom, D. G. et al. Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589–626 (2007).

    Article  CAS  Google Scholar 

  33. Gui, Z. & Bellaiche, L. Tuning and optimizing properties of ferroelectric films grown on a single substrate: a first-principles-based study. Phys. Rev. B 91, 020102 (2015).

    Article  Google Scholar 

  34. Xu, R. et al. Ferroelectric polarization reversal via successive ferroelastic transitions. Nat. Mater. 14, 79–86 (2015).

    Article  CAS  Google Scholar 

  35. Yan, L., Cao, H., Li, J. & Viehland, D. Triclinic phase in tilted (001) oriented BiFeO3 epitaxial thin films. Appl. Phys. Lett. 94, 132901 (2009).

    Article  Google Scholar 

  36. Jang, H. W. et al. Strain-induced polarization rotation in epitaxial (001) BiFeO3 thin films. Phys. Rev. Lett. 101, 107602 (2008).

    Article  CAS  Google Scholar 

  37. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998).

    Article  Google Scholar 

  38. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    Article  CAS  Google Scholar 

  39. Liu, G. et al. Positive effect of an internal depolarization field in ultrathin epitaxial ferroelectric films. Adv. Electron. Mater. 2, 1500288 (2016).

    Article  Google Scholar 

  40. Labuda, A. & Proksch, R. Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope. Appl. Phys. Lett. 106, 253103 (2015).

    Article  Google Scholar 

  41. Jesse, S. & Kalinin, S. V. Band excitation in scanning probe microscopy: sines of change. J. Phys. D 44, 464006 (2011).

    Article  Google Scholar 

  42. Li, Q. et al. Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition. Nat. Commun. 6, 8985 (2015).

    Article  CAS  Google Scholar 

  43. Li, Q. et al. Probing local bias-induced transitions using photothermal excitation contact resonance atomic force microscopy and voltage spectroscopy. ACS Nano 9, 1848–1857 (2015).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Kornev, I. A., Lisenkov, S., Haumont, R., Dkhil, B. & Bellaiche, L. Finite-temperature properties of multiferroic BiFeO3. Phys. Rev. Lett. 99, 227602 (2007).

    Article  Google Scholar 

  46. Daumont, C. et al. Strain dependence of polarization and piezoelectric response in epitaxial BiFeO3 thin films. J. Phys. Condens. Matter 24, 162202 (2012).

    Article  CAS  Google Scholar 

  47. Shang, S. L., Sheng, G., Wang, Y., Chen, L. Q. & Liu, Z. K. Elastic properties of cubic and rhombohedral BiFeO3 from first-principles calculations. Phys. Rev. B 80, 052102 (2009).

    Article  Google Scholar 

  48. Singh, A. K. et al. Origin of high piezoelectric response of Pb(ZrxTi1−x)O3 at the morphotropic phase boundary: role of elastic instability. Appl. Phys. Lett. 92, 022910 (2008).

    Article  Google Scholar 

  49. Carpenter, M. A. & Salje, E. K. H. Elastic anomalies in minerals due to structural phase transitions. Eur. J. Mineral. 10, 693–812 (1998).

    Article  CAS  Google Scholar 

  50. Rossetti, G. A., Khachaturyan, A. G., Akcay, G. & Ni, Y. Ferroelectric solid solutions with morphotropic boundaries: vanishing polarization anisotropy, adaptive, polar glass, and two-phase states. J. Appl. Phys. 103, 114113 (2008).

    Article  Google Scholar 

  51. Borisevich, A. Y. et al. Atomic-scale evolution of modulated phases at the ferroelectric–antiferroelectric morphotropic phase boundary controlled by flexoelectric interaction. Nat. Commun. 3, 775 (2012).

    Article  CAS  Google Scholar 

  52. Sando, D. et al. Linear electro-optic effect in multiferroic BiFeO3 thin films. Phys. Rev. B 89, 195106 (2014).

    Article  Google Scholar 

  53. Eltes, F. et al. An integrated optical modulator operating at cryogenic temperatures. Nat. Mater. 19, 1164–1168 (2020).

    Article  CAS  Google Scholar 

  54. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  55. Xu, C., Xu, B., Dupé, B. & Bellaiche, L. Magnetic interactions in BiFeO3: a first-principles study. Phys. Rev. B 99, 104420 (2019).

    Article  CAS  Google Scholar 

  56. Wojdel, J. C. & Íñiguez, J. Ab initio indications for giant magnetoelectric effects driven by structural softness. Phys. Rev. Lett. 105, 037208 (2010).

    Article  Google Scholar 

  57. Prosandeev, S., Wang, D., Ren, W., Íñiguez, J. & Bellaiche, L. Novel nanoscale twinned phases in perovskite oxides. Adv. Funct. Mater. 23, 234–240 (2013).

    Article  CAS  Google Scholar 

  58. Fu, H. & Bellaiche, L. First-principles determination of electromechanical responses of solids under finite electric fields. Phys. Rev. Lett. 91, 057601 (2003).

    Article  Google Scholar 

  59. Xu, C. et al. Electric-field switching of magnetic topological charge in type-I multiferroics. Phys. Rev. Lett. 125, 037203 (2020).

    Article  CAS  Google Scholar 

  60. Chaput, L., Togo, A., Tanaka, I. & Hug, G. Phonon-phonon interactions in transition metals. Phys. Rev. B 84, 094302 (2011).

    Article  Google Scholar 

  61. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Australian Research Council (ARC) Centre of Excellence in Future Low-Energy Electronics Technologies (project no. CE170100039) and funded by the Australian Government. D.S. and V.N. acknowledge the support of the ARC through Discovery grants. O.P. acknowledges the Australian Government Research Training Program Scholarship, the Australian Institute for Nuclear Science and Engineering (AINSE) post-graduate research award and the Scholarship AINSE Australian Nuclear Science and Technology Organisation (ANSTO) French Embassy programme. C.X. and L.B. acknowledge the Defense Advanced Research Projects Agency (DARPA) grant no. HR0011727183-D18AP00010 (Topological Excitations in Electronics (TEE) Program) and the Vannevar Bush Faculty Fellowship grant no. N00014-20-1-2834 from the US Department of Defense. X.C. acknowledges the use of facilities within the Monash Centre for Electron Microscopy, which were funded by ARC grants ARC Funding (LE0454166) and ARC Funding (LE0882821). The piezoresponse spectroscopy measurements were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (K.P.K.) and performed at Oak Ridge National Laboratory’s Center for Nanophase Materials Sciences, which also provided support (R.K.V.), and is a US Department of Energy Office of Science User Facility. B.X. thanks the National Natural Science Foundation of China for financial support under grant no. 12074277 and the Natural Science Foundation of Jiangsu Province (BK20201404). We thank C. Paillard for fruitful discussions and for sharing his scripts, and L. Collins for assistance with the IDS measurements.

Author information

Authors and Affiliations

Authors

Contributions

D.S. and V.N. conceived and supervised the study. O.P. and D.S. fabricated the films and performed X-ray diffraction experiments and analysis. X.C., Y.Z. and A.d.M. carried out STEM and geometric phase analysis. R.K.V. and K.P.K. performed the BEPS and IDS measurements and analysed the data. C.X. performed DFT calculations and B.X. carried out effective Hamiltonian simulations under the supervision of L.B.; O.P., D.S. and V.N. wrote the manuscript. All authors contributed to data analysis and manuscript preparation and commented on the manuscript.

Corresponding authors

Correspondence to Valanoor Nagarajan or Daniel Sando.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Kathrin Dörr, Sverre Selbach and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–22, Tables 1 and 2 and refs. 1–23.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paull, O., Xu, C., Cheng, X. et al. Anisotropic epitaxial stabilization of a low-symmetry ferroelectric with enhanced electromechanical response. Nat. Mater. 21, 74–80 (2022). https://doi.org/10.1038/s41563-021-01098-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01098-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing